scholarly journals Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field

2015 ◽  
Vol 773 ◽  
pp. 154-177 ◽  
Author(s):  
Basile Gallet ◽  
Charles R. Doering

We investigate the behaviour of flows, including turbulent flows, driven by a horizontal body force and subject to a vertical magnetic field, with the following question in mind: for a very strong applied magnetic field, is the flow mostly two-dimensional, with remaining weak three-dimensional fluctuations, or does it become exactly 2-D, with no dependence along the vertical direction? We first focus on the quasi-static approximation, i.e. the asymptotic limit of vanishing magnetic Reynolds number, $\mathit{Rm}\ll 1$: we prove that the flow becomes exactly 2-D asymptotically in time, regardless of the initial condition and provided that the interaction parameter $N$ is larger than a threshold value. We call this property absolute two-dimensionalization: the attractor of the system is necessarily a (possibly turbulent) 2-D flow. We then consider the full magnetohydrodynamic (MHD) equations and prove that, for low enough $\mathit{Rm}$ and large enough $N$, the flow becomes exactly 2-D in the long-time limit provided the initial vertically dependent perturbations are infinitesimal. We call this phenomenon linear two-dimensionalization: the (possibly turbulent) 2-D flow is an attractor of the dynamics, but it is not necessarily the only attractor of the system. Some 3-D attractors may also exist and be attained for strong enough initial 3-D perturbations. These results shed some light on the existence of a dissipation anomaly for MHD flows subject to a strong external magnetic field.

Author(s):  
Michael Zabarankin

A necessary optimality condition for the minimum-drag shape for a non-magnetic solid body immersed in the uniform flow of an electrically conducting viscous incompressible fluid under the presence of a magnetic field is obtained. It is assumed that the flow and magnetic field are uniform and parallel at infinity, and that the body and fluid have the same magnetic permeability. The condition is derived based on the linearized magnetohydrodynamic (MHD) equations subject to a constraint on the body’s volume, and generalizes the existing optimality conditions for the minimum-drag shapes for the body in the Stokes and Oseen flows of a non-conducting fluid. It is shown that for any Hartmann number M , Reynolds number Re and magnetic Reynolds number Re m , the minimum-drag shapes are fore-and-aft symmetric and have conic vertices with an angle of 2 π /3. The minimum-drag shapes are represented in a function-series form, and the series coefficients are found iteratively with the derived optimality condition. At each iteration, the MHD problem is solved via the boundary integral equations obtained based on the Cauchy integral formula for generalized analytic functions. With respect to the equal-volume sphere, drag reduction as a function of the Cowling number S= M 2 /( Re m   Re ) is smallest at S=1. Also, in the considered examples, the drag values for the minimum-drag shapes and equal-volume minimum-drag spheroids are sufficiently close.


2015 ◽  
Vol 783 ◽  
pp. 412-447 ◽  
Author(s):  
Basile Gallet

We consider the flow of a Newtonian fluid in a three-dimensional domain, rotating about a vertical axis and driven by a vertically invariant horizontal body force. This system admits vertically invariant solutions that satisfy the 2D Navier–Stokes equation. At high Reynolds number and without global rotation, such solutions are usually unstable to three-dimensional perturbations. By contrast, for strong enough global rotation, we prove rigorously that the 2D (and possibly turbulent) solutions are stable to vertically dependent perturbations. We first consider the 3D rotating Navier–Stokes equation linearized around a statistically steady 2D flow solution. We show that this base flow is linearly stable to vertically dependent perturbations when the global rotation is fast enough: under a Reynolds-number-dependent threshold value$Ro_{c}(Re)$of the Rossby number, the flow becomes exactly 2D in the long-time limit, provided that the initial 3D perturbations are small. We call this property linear two-dimensionalization. We compute explicit lower bounds on$Ro_{c}(Re)$and therefore determine regions of the parameter space$(Re,Ro)$where such exact two-dimensionalization takes place. We present similar results in terms of the forcing strength instead of the root-mean-square velocity: the global attractor of the 2D Navier–Stokes equation is linearly stable to vertically dependent perturbations when the forcing-based Rossby number$Ro^{(f)}$is lower than a Grashof-number-dependent threshold value$Ro_{c}^{(f)}(Gr)$. We then consider the fully nonlinear 3D rotating Navier–Stokes equation and prove absolute two-dimensionalization: we show that, below some threshold value$Ro_{\mathit{abs}}^{(f)}(Gr)$of the forcing-based Rossby number, the flow becomes two-dimensional in the long-time limit, regardless of the initial condition (including initial 3D perturbations of arbitrarily large amplitude). These results shed some light on several fundamental questions of rotating turbulence: for arbitrary Reynolds number$Re$and small enough Rossby number, the system is attracted towards purely 2D flow solutions, which display no energy dissipation anomaly and no cyclone–anticyclone asymmetry. Finally, these results challenge the applicability of wave turbulence theory to describe stationary rotating turbulence in bounded domains.


Author(s):  
R. Chaudhary ◽  
S. P. Vanka ◽  
B. G. Thomas

Magnetic fields are crucial in controlling flow in various physical processes of significance. One of these processes, which has significant application of a magnetic field, is continuous casting of steel, where different magnetic field configurations are used to control the turbulent steel flow in the mold to minimize defects in the cast steel. This study has been undertaken to analyze the effect of magnetic field on mean velocities and turbulence parameters in the molten metal flows through a square duct. Direct Numerical Simulations without using a sub-grid scale (SGS) model have been used to characterize the three-dimensional transient flow. The coupled Navier-Stokes-MHD equations have been solved with a three-dimensional fractional-step numerical procedure. Because liquid metals have low magnetic Reynolds number, the induced magnetic field has been neglected and the electric potential method for magnetic field-flow coupling has been implemented. Initially, laminar simulations in a square duct have been performed and results generated were compared with previous series solutions. Next, simulations of a non-MHD flow in a square duct at low Reynolds number were performed and satisfactorily compared with results of a previous DNS study. Subsequently, different levels of a magnetic field were applied to study its effect on the turbulence until the flow completely laminarized. Time-dependent and time-averaged flows have been studied through mean velocities and fluctuations, and power spectrums of instantaneous velocities.


2007 ◽  
Vol 574 ◽  
pp. 131-154 ◽  
Author(s):  
A. VOROBEV ◽  
O. ZIKANOV

Instability and transition to turbulence in a temporally evolving free shear layer of an electrically conducting fluid affected by an imposed parallel magnetic field is investigated numerically. The case of low magnetic Reynolds number is considered. It has long been known that the neutral disturbances of the linear problem are three-dimensional at sufficiently strong magnetic fields. We analyse the details of this instability solving the generalized Orr–Sommerfeld equation to determine the wavenumbers, growth rates and spatial shapes of the eigenmodes. The three-dimensional perturbations are identified as oblique waves and their properties are described. In particular, we find that at high hydrodynamic Reynolds number, the effect of the strength of the magnetic field on the fastest growing perturbations is limited to an increase of their oblique angle. The dimensions and spatial shape of the waves remain unchanged. The transition to turbulence triggered by the growing oblique waves is investigated in direct numerical simulations. It is shown that initial perturbations in the form of superposition of two symmetric waves are particularly effective in inducing three-dimensionality and turbulence in the flow.


1970 ◽  
Vol 41 (2) ◽  
pp. 435-452 ◽  
Author(s):  
H. K. Moffatt

The effect of turbulence on a magnetic field whose length-scale L is initially large compared with the scale l of the turbulence is considered. There are no external sources for the field, and in the absence of turbulence it decays by ohmic dissipation. It is assumed that the magnetic Reynolds number Rm = u0l/λ (where u0 is the root-mean-square velocity and λ the magnetic diffusivity) is small. It is shown that to lowest order in the small quantities l/L and Rm, isotropic turbulence has no effect on the large-scale field; but that turbulence that lacks reflexional symmetry is capable of amplifying Fourier components of the field on length scales of order Rm−2l and greater. In the case of turbulence whose statistical properties are invariant under rotation of the axes of reference, but not under reflexions in a point, it is shown that the magnetic energy density of a magnetic field which is initially a homogeneous random function of position with a particularly simple spectrum ultimately increases as t−½exp (α2t/2λ3) where α(= O(u02l)) is a certain linear functional of the spectrum tensor of the turbulence. An analogous result is obtained for an initially localized field.


1981 ◽  
Vol 104 ◽  
pp. 419-443 ◽  
Author(s):  
J. Léorat ◽  
A. Pouquet ◽  
U. Frisch

Liquid-sodium-cooled breeder reactors may soon be operating at magnetic Reynolds numbers RM where magnetic fields can be self-excited by a dynamo mechanism (as first suggested by Bevir 1973). Such flows have kinetic Reynolds numbers RV of the order of 107 and are therefore highly turbulent.This leads us to investigate the behaviour of MHD turbulence with high RV and low magnetic Prandtl numbers. We use the eddy-damped quasi-normal Markovian closure applied to the MHD equations. For simplicity we restrict ourselves to homogeneous and isotropic turbulence, but we do include helicity.We obtain a critical magnetic Reynolds number RMc of the order of a few tens (non-helical case) above which magnetic energy is present. RMc is practically independent of RV (in the range 40 to 106). RMc can be considerably decreased by the presence of helicity: when the overall size of the flow L is much larger than the integral scale l0, RMc can drop below unity as suggested by an α-effect argument. When L ≈ l0 the drop can still be substantial (factor of 6) when helicity is a maximum. We examine how the turbulence is modified when RM crosses RMc: presence of magnetic energy, decreased kinetic energy, steepening of kinetic-energy spectrum, etc.We make no attempt to obtain quantitative estimates for a breeder reactor, but discuss some of the possible consequences of exceeding RMc, such as decreased turbulent heat transport. More precise information may be obtained from numerical simulations and experiments (including some in the subcritical regime).


2011 ◽  
Vol 675 ◽  
pp. 540-551 ◽  
Author(s):  
ANJA C. SLIM ◽  
HERBERT E. HUPPERT

We consider theoretically the long-time evolution of axisymmetric, high Reynolds number, Boussinesq gravity currents supplied by a constant, small-area source of mass and radial momentum in a deep, quiescent ambient. We describe the gravity currents using a shallow-water model with a Froude number closure condition to incorporate ambient form drag at the front and present numerical and asymptotic solutions. The predicted profile consists of an expanding, radially decaying, steady interior that connects via a shock to a deeper, self-similar frontal boundary layer. Controlled by the balance of interior momentum flux and frontal buoyancy across the shock, the front advances as (g′sQ/r1/4s)4/154/5, where g′s is the reduced gravity of the source fluid, Q is the total volume flux, rs is the source radius and is time. A radial momentum source has no effect on this solution below a non-zero threshold value. Above this value, the (virtual) radius over which the flow becomes critical can be used to collapse the solution onto the subthreshold one. We also use a simple parameterization to incorporate the effect of interfacial entrainment, and show that the profile can be substantially modified, although the buoyancy profile and radial extent are less significantly impacted. Our predicted profiles and extents are in reasonable agreement with existing experiments.


2009 ◽  
Vol 64 (7-8) ◽  
pp. 455-466 ◽  
Author(s):  
Ramprasad Prajapati ◽  
Raj Kamal Sanghvi ◽  
Rajendra Kumar Chhajlani ◽  

AbstractThe effect of a magnetic field and suspended dust particles on both the Kelvin-Helmholtz (K-H) and the Rayleigh-Taylor (R-T) instability of two superimposed streaming magnetized plasmas is investigated. The magnetized fluids are assumed to be incompressible and flowing on top of each other. The usual magnetohydrodynamic (MHD) equations are considered with suspended dust particles. The basic equations of the problem are linearized and the dispersion relation is obtained using normal mode analysis by applying the appropriate boundary conditions. The general dispersion relation is found to be modified due to the presence of the suspended dust particles and of the magnetic field. The effect of the magnetic field appears in the dispersion relation if three-dimensional perturbations of the system are considered. The general conditions of the K-H instability as well as the R-T instability are derived for the considered medium. The stability of the system for both cases is discussed by applying the Routh-Hurwitz criterion. Numerical analysis is performed to show the effect of various parameters on the growth rates of the K-H and R-T instabilities. Three different cases of the present configurations are considered and the conditions of instability are obtained. It is found that the conditions for the K-H and R-T instabilities depend on the magnetic field, on the suspended dust particles and on the relaxation frequency of the particles. The magnetic field and particle density have stabilizing influence, while the density difference between the fluids has a destabilizing influence on the growth rate of the K-H and R-T configurations.


1975 ◽  
Vol 14 (2) ◽  
pp. 283-294 ◽  
Author(s):  
B. U. Ö. Sonnerup ◽  
E. R. Priest

A family of exact solutions to the MHD equations is presented for steady incompressible two- and three-dimensional flow in the vicinity of the stagnation point, which forms in a current sheet separating two colliding plasma streams. The magnetic field in each plasma is strictly parallel to the current sheet, but can have different magnitudes and directions. Resistive and viscous effects are accounted for. These flows are of considerable interest in connexion with the magnetic field merging process. They represent the limit of resistive field annihilation with zero reconnexion.


Sign in / Sign up

Export Citation Format

Share Document