scholarly journals Electrohydrodynamics of stationary cone-jet streaming

Author(s):  
Andrey V. Subbotin ◽  
Alexander N. Semenov

We discover novel types of stationary cone-jet steams emitting from a nozzle of a syringe loaded with a conductive liquid. The predicted cone-jet-flow geometries are based on the analysis of the electrohydrodynamic equations including the surface current. The electric field and the flow velocity field inside the cone are calculated. It is shown that the electric current along the conical stream depends on the cone angle. The stable values of this angle are obtained based on the Onsager’s principle of maximum entropy production. The characteristics of the jet that emits from the conical tip are also studied. The obtained results are relevant both for the electrospraying and electrospinning processes.

1968 ◽  
Vol 90 (1) ◽  
pp. 45-50
Author(s):  
R. G. Fenton

The upper bound of the average ram pressure, based on an assumed radial flow velocity field, is derived for plane strain extrusion. Ram pressures are calculated for a complete range of reduction ratios and die angles, considering a wide range of frictional conditions. Results are compared with upper-bound ram pressures obtained by considering velocity fields other than the radial flow field, and it is shown that for a considerable range of reduction ratios and die angles, the radial flow field yields better upper bounds for the average ram pressure.


2012 ◽  
Vol 594-597 ◽  
pp. 1975-1978
Author(s):  
Hai Jing Zhao ◽  
Dan Xun Li ◽  
Xing Kui Wang

Aimed at the representative project which is protected by the downstream sediment storage dam, three dimensional flow velocity field in local scour area around the separate bridge pier via physical model test was studied. The influences of shaping the eroded pit caused by the velocities in different directions were analyzed. The distribution results of flow velocity field in local scour pit near the pier protected by the sediment storage dam, deduced from the paper, will provide references for the defensive design of bridge projects.


2015 ◽  
Vol 51 (12) ◽  
pp. 9665-9678 ◽  
Author(s):  
Mahdi Razaz ◽  
Kiyosi Kawanisi ◽  
Arata Kaneko ◽  
Ioan Nistor

Sign in / Sign up

Export Citation Format

Share Document