Schwarzite nets: a wealth of 3-valent examples sharing similar topologies and symmetries

Author(s):  
Stephen T. Hyde ◽  
Martin Cramer Pedersen

We enumerate trivalent reticulations of two- and three-periodic hyperbolic surfaces by equal-sided n -gonal faces, ( n , 3), where n  = 7, 8, 9, 10, 12. These are the simplest hyperbolic generalizations of the planar graphene net, (6, 3) and dodecahedrane, (5, 3). The enumeration proceeds by deleting isometries of regular reticulations of two-dimensional hyperbolic space until the ( n , 3) nets can be embedded in euclidean three-space via periodic hyperbolic surfaces. Those nets are then symmetrized in euclidean space retaining their net topology, leading to explicit crystallographic net embeddings whose edges are as equal as possible, affording candidtae patterns for graphitic schwarzites. The resulting schwarzites are the most symmetric examples. More than one hundred topologically distinct nets are described, most of which are novel.

Author(s):  
Vitaly Ushakov

AbstractThe classical notion of a two-dimensional develpable surface in Euclidean three-space is extended to the case of arbitrary dimension and codimension. A collection of characteristic properties is presented. The theorems are stated with the minimal possible integer smoothness. The main tool of the investigation is Cartan's moving frame method.


2019 ◽  
Vol 27 (1) ◽  
Author(s):  
Sameh Shenawy

Abstract Let $\mathcal {W}^{n}$ W n be the set of smooth complete simply connected n-dimensional manifolds without conjugate points. The Euclidean space and the hyperbolic space are examples of these manifolds. Let $W\in \mathcal {W}^{n}$ W ∈ W n and let A and B be two convex subsets of W. This note aims to investigate separation and slab horosphere separation of A and B. For example,sufficient conditions on A and B to be separated by a slab of horospheres are obtained. Existence and uniqueness of foot points and farthest points of a convex set A in $W\in \mathcal {W}$ W ∈ W are considered.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Yiming Chen ◽  
Victor Gorbenko ◽  
Juan Maldacena

Abstract We consider two dimensional CFT states that are produced by a gravitational path integral.As a first case, we consider a state produced by Euclidean AdS2 evolution followed by flat space evolution. We use the fine grained entropy formula to explore the nature of the state. We find that the naive hyperbolic space geometry leads to a paradox. This is solved if we include a geometry that connects the bra with the ket, a bra-ket wormhole. The semiclassical Lorentzian interpretation leads to CFT state entangled with an expanding and collapsing Friedmann cosmology.As a second case, we consider a state produced by Lorentzian dS2 evolution, again followed by flat space evolution. The most naive geometry also leads to a similar paradox. We explore several possible bra-ket wormholes. The most obvious one leads to a badly divergent temperature. The most promising one also leads to a divergent temperature but by making a projection onto low energy states we find that it has features that look similar to the previous Euclidean case. In particular, the maximum entropy of an interval in the future is set by the de Sitter entropy.


2005 ◽  
Vol 2005 (4) ◽  
pp. 537-543
Author(s):  
Ricardo Sa Earp ◽  
Eric Toubiana

We present another proof of a theorem due to Hoffman and Osserman in Euclidean space concerning the determination of a conformal immersion by its Gauss map. Our approach depends on geometric quantities, that is, the hyperbolic Gauss mapGand formulae obtained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hyperbolic Gauss map with some compatibility relation determine a conformal immersion, proved in a previous paper.


Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

In this chapter we intend to investigate the stability of the Leray solutions constructed in the previous chapter. It is useful to start by analyzing the linearized version of the Navier–Stokes equations, so the first section of the chapter is devoted to the proof of the well-posedness of the time-dependent Stokes system. The study will be applied in Section 3.2 to the two-dimensional Navier–Stokes equations, and the more delicate case of three space dimensions will be dealt with in Sections 3.3–3.5.


1984 ◽  
Vol 36 (3) ◽  
pp. 537-549 ◽  
Author(s):  
Tibor Bisztriczky

Let Φ be a regular closed C2 curve on a sphere S in Euclidean three-space. Let H(S)[H(Φ) ] denote the convex hull of S[Φ]. For any point p ∈ H(S), let O(p) be the set of points of Φ whose osculating plane at each of these points passes through p.1. THEOREM ([8]). If Φ has no multiple points and p ∈ H(Φ), then |0(p) | ≧ 3[4] when p is [is not] a vertex of Φ.2. THEOREM ( [9]). a) If the only self intersection point of Φ is a doublepoint and p ∈ H(Φ) is not a vertex of Φ, then |O(p)| ≧ 2.b) Let Φ possess exactly n vertices. Then(1)|O(p)| ≦ nforp ∈ H(S) and(2)if the osculating plane at each vertex of Φ meets Φ at exactly one point, |O(p)| = n if and only if p ∈ H(Φ) is not vertex.


Sign in / Sign up

Export Citation Format

Share Document