scholarly journals Responses to stimulation of the motor area of the cerebral cortex

In a previous paper on concurrent mechanical and electrical responses to stimulation of the motor cortex in the monkey (3), we reported the transmission of stimulus rates of 18 to 68 a second. We were unable at that time to carry the enquiry farther owing to lack of means of obtaining higher variable rates of stimulus. Since then we have improvised apparatus giving higher rates and have been able to continue this part of our investigation, using rates up to 290 a second. The object was to determine the upper limit of rate of stimulus which would be transmitted directly to the muscle. We have also been able to collect much information as to the effects of low rates of stimulus, latent periods and the nature of cortical motor innervation as a whole. In the course of the work six further monkeys were used, all small Macacus Rhesus . Of these two had also been used for experiments having no bearing on the present subject and not of a nature to affect our results. The animals were prepared as previously described and the muscles from which records were obtained were M. brachialis anticus , M. flexor profundus digitorum , M. extensor carpi radialis and M. triceps brachii .

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

AbstractElectrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


1982 ◽  
Vol 2 (2) ◽  
pp. 229-239 ◽  
Author(s):  
G. Benzi ◽  
E. Arrigoni ◽  
O. Pastoris ◽  
R. F. Villa ◽  
M. Dossena ◽  
...  

The synaptosomal fractions obtained from the motor area of the cerebral cortex of normocapnic, normoxic, or hypoxic, untreated beagle dogs and of pentobarbital (Nembutal®)- or cytidine diphosphate (CDP)-choline-treated dogs were incubated and analyzed for ATP, ADP, AMP, creatine phosphate, pyruvate, and lactate. The data were compared with data obtained by the surface freezing technique from the whole contralateral cortical area. The in vivo intracarotid perfusion of the drug differentially affected the content of the metabolites and their ratio. This occurred whether the evaluations were performed in the incubated synaptosomal preparations or in whole cerebral tissue, both during normoxia and after hypoxia (15 min; Pao2 = 17–19 mm Hg). Thus intracarotid perfusion of nembutal increased the synaptosomal phosphorylation state both in normoxic and in hypoxic animals, whereas the effect on the metabolism of the contralateral cortical motor area as a whole was in all cases less than that observed in the synaptosomal fraction. Perfusion with CDP-choline increased synaptosomal phosphorylation after the hypoxic condition, but had no effect in normoxia or on the whole cortical tissue of the motor area. The possibility of obtaining a cerebral sparing action by utilizing molecules devoid of anesthetic action is suggested.


2021 ◽  
Author(s):  
Igor Lavrov ◽  
Timur Latypov ◽  
Elvira Mukhametova ◽  
Brian Lundstrom ◽  
Paola Sandroni ◽  
...  

Abstract Electrical stimulation of the cerebral cortex (ESCC) has been used to treat intractable neuropathic pain for nearly two decades, however, no standardized approach for this technique has been developed. In order to optimize targeting and validate the effect of ESCC before placing the permanent grid, we introduced initial assessment with trial stimulation, using a temporary grid of subdural electrodes. In this retrospective study we evaluate the role of electrode location on cerebral cortex in control of neuropathic pain and the role of trial stimulation in target-optimization for ESCC. Location of the temporary grid electrodes and location of permanent electrodes were evaluated in correlation with the long-term efficacy of ESCC. The results of this study demonstrate that the long-term effect of subdural pre-motor cortex stimulation is at least the same or higher compare to effect of subdural motor or combined pre-motor and motor cortex stimulation. These results also demonstrate that the initial trial stimulation helps to optimize permanent electrode positions in relation to the optimal functional target that is critical in cases when brain shift is expected. Proposed methodology and novel results open a new direction for development of neuromodulation techniques to control chronic neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document