scholarly journals Microsatellite diversity suggests different histories for Mediterranean and Northern European cattle populations

2005 ◽  
Vol 272 (1574) ◽  
pp. 1837-1843 ◽  
Author(s):  
Teresa Cymbron ◽  
Abigail R Freeman ◽  
M Isabel Malheiro ◽  
Jean-Denis Vigne ◽  
Daniel G Bradley

Based on archaeological evidence, the spread of agropastoralism across Europe followed two main paths: the Danubian route, along which Neolithic farmers expanded north across the central European plains; and the Mediterranean route, where migration occurred along the coast of the Mediterranean sea. Here we examine 20 cattle breeds from the continent and assess the genetic diversity levels and relationships among the breeds using 19 microsatellite markers. Additionally, we show evidence that concords with two distinct cattle migrations from the Near East, and also demonstrate that Mediterranean cattle breeds may have had more recent input from both the Near East and Africa.

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Gabriele Senczuk ◽  
Salvatore Mastrangelo ◽  
Paolo Ajmone-Marsan ◽  
Zsolt Becskei ◽  
Paolo Colangelo ◽  
...  

Abstract Background During the Neolithic expansion, cattle accompanied humans and spread from their domestication centres to colonize the ancient world. In addition, European cattle occasionally intermingled with both indicine cattle and local aurochs resulting in an exclusive pattern of genetic diversity. Among the most ancient European cattle are breeds that belong to the so-called Podolian trunk, the history of which is still not well established. Here, we used genome-wide single nucleotide polymorphism (SNP) data on 806 individuals belonging to 36 breeds to reconstruct the origin and diversification of Podolian cattle and to provide a reliable scenario of the European colonization, through an approximate Bayesian computation random forest (ABC-RF) approach. Results Our results indicate that European Podolian cattle display higher values of genetic diversity indices than both African taurine and Asian indicine breeds. Clustering analyses show that Podolian breeds share close genomic relationships, which suggests a likely common genetic ancestry. Among the simulated and tested scenarios of the colonization of Europe from taurine cattle, the greatest support was obtained for the model assuming at least two waves of diffusion. Time estimates are in line with an early migration from the domestication centre of non-Podolian taurine breeds followed by a secondary migration of Podolian breeds. The best fitting model also suggests that the Italian Podolian breeds are the result of admixture between different genomic pools. Conclusions This comprehensive dataset that includes most of the autochthonous cattle breeds belonging to the so-called Podolian trunk allowed us not only to shed light onto the origin and diversification of this group of cattle, but also to gain new insights into the diffusion of European cattle. The most well-supported scenario of colonization points to two main waves of migrations: with one that occurred alongside with the Neolithic human expansion and gave rise to the non-Podolian taurine breeds, and a more recent one that favoured the diffusion of European Podolian. In this process, we highlight the importance of both the Mediterranean and Danube routes in promoting European cattle colonization. Moreover, we identified admixture as a driver of diversification in Italy, which could represent a melting pot for Podolian cattle.


2007 ◽  
Vol 38 (6) ◽  
pp. 550-559 ◽  
Author(s):  
G. X. Zhang ◽  
Z. G. Wang ◽  
W. S. Chen ◽  
C. X. Wu ◽  
X. Han ◽  
...  

Author(s):  
A. S. Kramarenko

The Southern Meat cattle is a composite breed developed by crossing Cuban zebu (Bos indicus) with different cattle breeds (Bos taurus) – local the Red Steppe, Hereford, Charolais, Santa Gertrudis, Dairy Shorthorn. Genetic structure of the Southern meat cattle breed from the State Enterprise Experimental Farm “Askaniyske” NAAS Ukraine (Kherson region) were investigated based on the microsatellite DNA loci. Analysis included 192 animals. A panel of 12 bovine-specific microsatellite markers (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA122, INRA23, TGLA126, BM1818, ETH3, ETH225 and BM1824), recommended of the ISAG for cattle genetic diversity studies, was selected for genetic characterization and revealing the extent of genetic diversity in the Southern Meat cattle breed. Genomic DNA was extracted from tissue samples using Nexttec column (Nexttec Biotechnology GmbH, Germany) following the manufacturer's instructions. All laboratory tests were conducted in the laboratory of Molecular Genetics, Animal Center of Biotechnology and Molecular Diagnostics, All-Russian Research Institute for Animal Husbandry named after academy member L.K. Ernst. We report the distribution and the frequency of a taurine and an indicine specific alleles in the Southern Meat cattle breed using literature data about the Zebu and different cattle breeds genetic structure based on microsatellite loci from our list. It can be assumed that the TGLA22777, BM2113141-143, ETH10209-211, TGLA122149, INRA23194-198, TGLA126123, ETH225156-158-160 alleles among the Southern Meat cattle breed examined individuals were inherited from a B. indicus ancestor. On the other hand, the TGLA53156, ETH10217-219, TGLA122143, INRA23202, TGLA126115, ETH225148-150, BM1824188-190 alleles in the Southern Meat cattle gene pool may be inherited from a B. taurus ancestor (i.e., taurine breeds diagnostic alleles).


2019 ◽  
Vol 64 (No. 10) ◽  
pp. 411-419 ◽  
Author(s):  
Eymen Demir ◽  
Murat Soner Balcioğlu

In the present study, genetic diversity and population structure of Holstein Friesian and three native cattle breeds of Turkey including Turkish Grey Steppe, Eastern Anatolian Red and Anatolian Black were assessed. Totally 120 individuals of 4 breeds were genotyped using 20 microsatellite markers and 204 different alleles, of which 31 were private alleles, were detected. The average observed and expected heterozygosity values were 0.63 and 0.74, respectively. Observed heterozygosity at the marker level ranged from 0.30 (DRBP1) to 0.88 (ILSTS011), while expected heterozygosity ranged from 0.51 (INRABERN172) to 0.88 (SPS113). Inbreeding coefficient values for Turkish Grey Steppe, Eastern Anatolian Red, Anatolian Black and Holstein Friesian were 0.216, 0.202, 0.128 and 0.069, respectively. The lowest pairwise F<sub>ST</sub> value (0.030) was detected between Turkish Grey Steppe and Anatolian Black breeds, while the highest value (0.070) was detected between Turkish Grey Steppe and Holstein Friesian. Results of structure and factorial correspondence analysis revealed that Turkish native cattle breeds and Holstein Friesian were genetically different enough to separate the two breeds. Results of bottleneck analysis indicated heterozygosity deficiency in Turkish Grey Steppe (P &lt; 0.05).


2018 ◽  
Vol 48 (1) ◽  
pp. 128 ◽  
Author(s):  
E Gororo ◽  
S.M. Makuza ◽  
F.P. Chatiza ◽  
F Chidzwondo ◽  
T.W. Sanyika

2014 ◽  
Vol 27 (11) ◽  
pp. 1548-1553 ◽  
Author(s):  
Sangwon Suh ◽  
Young-Sin Kim ◽  
Chang-Yeon Cho ◽  
Mi-Jeong Byun ◽  
Seong-Bok Choi ◽  
...  

1998 ◽  
Vol 29 (5) ◽  
pp. 333-340 ◽  
Author(s):  
D. E. MacHugh ◽  
R. T. Loftus ◽  
P. Cunningham ◽  
D. G. Bradley

2009 ◽  
Vol 18 (16) ◽  
pp. 3394-3410 ◽  
Author(s):  
IVICA MEDUGORAC ◽  
ANA MEDUGORAC ◽  
INGOLF RUSS ◽  
CLAUDIA E. VEIT-KENSCH ◽  
PIERRE TABERLET ◽  
...  

2022 ◽  
Vol 25 (8) ◽  
pp. 831-838
Author(s):  
R. B. Aitnazarov ◽  
T. M. Mishakova ◽  
N. S. Yudin

There are currently over a thousand indigenous cattle breeds well adapted to local habitat conditions thanks to their long history of evolution and breeding. Identification of the genetic variations controlling the adaptation of local cattle breeds for their further introduction into the genome of highly productive global breeds is a matter of great relevance. Studying individual populations of the same breed with the use of microsatellite markers makes it possible to assess their genetic diversity, relationships, and breed improvement potential. Although the Black Pied breed is the most common dairy cattle breed in Russia, there are only a few studies on genetic diversity in local Black Pied populations in some Russian regions. The goal of the present study was to analyze the genetic diversity in Black Pied cattle populations in the Novosibirsk Region and compare them with other Russian populations; to identify significantly divergent populations with a view to preserving them under the programs aimed at maintaining the genetic diversity of the domestic Black Pied breed. DNA samples from 4788 animals of the Black Pied breed from six breeding enterprises in the Novosibirsk Region have been studied using 11 microsatellite markers. No significant differences in genetic variability parameters were found between individual populations. Private alleles have been identified in five out of six populations. Five populations have shown inbreeding coefficient values (FIS) below zero, which indicates heterozygosity excess. The population distribution test, principal component analysis, FST and DEST values, cluster analysis, and phylogenetic analysis have revealed two populations genetically distinct from the others. Essentially, the genetic diversity parameters of the six studied Black Pied cattle populations from the Novosibirsk Region show no significant differences from other Russian populations of the breed. Excess heterozygosity is observed in most breeding enterprises, which is a sign of a low inbreeding rate. To maintain the genetic diversity of the Russian Black Pied cattle, we recommend focusing on the two populations with significant genetic distinctions from the others.


2006 ◽  
Vol 20 (6) ◽  
pp. 1768-1779 ◽  
Author(s):  
I. TAPIO ◽  
S. VÄRV ◽  
J. BENNEWITZ ◽  
J. MALEVICIUTE ◽  
E. FIMLAND ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document