scholarly journals The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution

2006 ◽  
Vol 273 (1595) ◽  
pp. 1733-1742 ◽  
Author(s):  
Andrew D Peel ◽  
Maximilian J Telford ◽  
Michael Akam

Phylogenetic analyses imply that multiple engrailed-family gene duplications occurred during hexapod evolution, a view supported by previous reports of only a single engrailed-family gene in members of the grasshopper genus Schistocerca and in the beetle Tribolium castaneum . Here, we report the cloning of a second engrailed-family gene from Schistocerca gregaria and present evidence for two engrailed-family genes from four additional hexapod species. We also report the existence of a second engrailed-family gene in the Tribolium genome. We suggest that the engrailed and invected genes of Drosophila melanogaster have existed as a conserved gene cassette throughout holometabolous insect evolution. In total 11 phylogenetically diverse hexapod orders are now known to contain species that possess two engrailed-family paralogues, with in each case only one paralogue encoding the RS-motif, a characteristic feature of holometabolous insect invected proteins. We propose that the homeoboxes of hexapod engrailed-family paralogues are evolving in a concerted fashion, resulting in gene trees that overestimate the frequency of gene duplication. We present new phylogenetic analyses using non-homeodomain amino acid sequence that support this view. The S. gregaria engrailed-family paralogues provide strong evidence that concerted evolution might in part be explained by recurrent gene conversion. Finally, we hypothesize that the RS-motif is part of a serine-rich domain targeted for phosphorylation.

Marine Drugs ◽  
2018 ◽  
Vol 16 (10) ◽  
pp. 381 ◽  
Author(s):  
Gabriel Matos ◽  
Paulina Schmitt ◽  
Cairé Barreto ◽  
Natanael Farias ◽  
Guilherme Toledo-Silva ◽  
...  

Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides with a central β-hairpin structure able to bind to microbial components. Mining sequence databases for ALFs allowed us to show the remarkable diversity of ALF sequences in shrimp. We found at least seven members of the ALF family (Groups A to G), including two novel Groups (F and G), all of which are encoded by different loci with conserved gene organization. Phylogenetic analyses revealed that gene expansion and subsequent diversification of the ALF family occurred in crustaceans before shrimp speciation occurred. The transcriptional profile of ALFs was compared in terms of tissue distribution, response to two pathogens and during shrimp development in Litopenaeus vannamei, the most cultivated species. ALFs were found to be constitutively expressed in hemocytes and to respond differently to tissue damage. While synthetic β-hairpins of Groups E and G displayed both antibacterial and antifungal activities, no activity was recorded for Group F β-hairpins. Altogether, our results showed that ALFs form a family of shrimp AMPs that has been the subject of intense diversification. The different genes differ in terms of tissue expression, regulation and function. These data strongly suggest that multiple selection pressures have led to functional diversification of ALFs in shrimp.


Author(s):  
Ran Li ◽  
Wenbao Zhuang ◽  
Congcong Wang ◽  
Hamed El-Serehy ◽  
Saleh A. Al-Farraj ◽  
...  

The morphology and molecular phylogeny of Plagiopyla ovata Kahl, 1931, a poorly known anaerobic ciliate, were investigated based on a population isolated from sand samples collected from the Yellow Sea coast at Qingdao, PR China. Details of the oral ciliature are documented for the first time to our knowledge and an improved species diagnosis is given. The small subunit ribosomal RNA (SSU rRNA) gene was newly sequenced and phylogenetic analyses revealed that P. ovata clusters within the monophyletic family Plagiopylidae. However, evolutionary relationships within both the family Plagiopylidae and the genus Plagiopyla remain obscure owing to undersampling, the lack of sequence data from known species and low nodal support or unstable topologies in gene trees. A key to the identification of the species of the genus Plagiopyla with validly published names is also supplied.


2019 ◽  
Vol 10 (2) ◽  
pp. 811-826 ◽  
Author(s):  
Albert Erives ◽  
Bernd Fritzsch

The evolutionary diversification of animals is one of Earth’s greatest marvels, yet its earliest steps are shrouded in mystery. Animals, the monophyletic clade known as Metazoa, evolved wildly divergent multicellular life strategies featuring ciliated sensory epithelia. In many lineages epithelial sensoria became coupled to increasingly complex nervous systems. Currently, different phylogenetic analyses of single-copy genes support mutually-exclusive possibilities that either Porifera or Ctenophora is sister to all other animals. Resolving this dilemma would advance the ecological and evolutionary understanding of the first animals and the evolution of nervous systems. Here we describe a comparative phylogenetic approach based on gene duplications. We computationally identify and analyze gene families with early metazoan duplications using an approach that mitigates apparent gene loss resulting from the miscalling of paralogs. In the transmembrane channel-like (TMC) family of mechano-transducing channels, we find ancient duplications that define separate clades for Eumetazoa (Placozoa + Cnidaria + Bilateria) vs. Ctenophora, and one duplication that is shared only by Eumetazoa and Porifera. In the Max-like protein X (MLX and MLXIP) family of bHLH-ZIP regulators of metabolism, we find that all major lineages from Eumetazoa and Porifera (sponges) share a duplicated gene pair that is sister to the single-copy gene maintained in Ctenophora. These results suggest a new avenue for deducing deep phylogeny by choosing rather than avoiding ancient gene paralogies.


2020 ◽  
Author(s):  
Matthew H Van Dam ◽  
James B Henderson ◽  
Lauren Esposito ◽  
Michelle Trautwein

Abstract Ultraconserved genomic elements (UCEs) are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes does not require prior knowledge of genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here, we characterized UCEs from 11 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated four different sets of UCE markers by genomic category from five different studies including: birds, mammals, fish, Hymenoptera (ants, wasps, and bees), and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by two or more UCEs, corresponding to nonoverlapping segments of a single gene. We considered these UCEs to be nonindependent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging cogenic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees was significantly improved across all data sets apparently driven by the increase in loci length. Additionally, we conducted simulations and found that gene trees generated from merged UCEs were more accurate than those generated by unmerged UCEs. As loci length improves gene tree accuracy, this modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses. [Anchored hybrid enrichment; ants; ASTRAL; bait capture; carangimorph; Coleoptera; conserved nonexonic elements; exon capture; gene tree; Hymenoptera; mammal; phylogenomic markers; songbird; species tree; ultraconserved elements; weevils.]


2017 ◽  
Author(s):  
Timothy D. Swain

AbstractThe recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea.ResumenSpanish language translation by Lisbeth O. Swain, DePaul University, Chicago, Illinois, 60604, USA.Aunque la proliferación reciente y acelerada en la identificación de taxones en Zoanthidea ha sido acompañada por una propagación paralela de los árboles de genes como una herramienta en el descubrimiento de especies, no hay una correspondencia en cuanto a la ampliación de nuestro conocimiento en filogenia. Esta disparidad, es causada por la competencia entre la capacidad de los alineamientos de secuencia del ácido desoxirribonucleico (ADN) automatizados y la información contenida en los datos de genes que se aplican a los métodos de inferencia filogenética en este grupo de Zoanthidea. Las regiones o segmentos de genes conservados son fácilmente alineados dentro del orden; sin embargo, producen árboles de genes con resultados paupérrimos; además, aunque estas regiones hipervariables de genes o segmentos contienen las señas evolutivas necesarias para apoyar la construcción robusta y completa de árboles filogenéticos, estos genes producen alineamientos de secuencia abrumadores. Los alineamientos escalonados de secuencias son una forma de alineamientos informados por la filogenia y compuestos de un mosaico de regiones locales y universales que permiten que inferencias filogenéticas sean aplicadas a todos los nucleótidos de regiones hipervariables y de genes o segmentos conservados. Las comparaciones entre especies de árboles filogenéticos quese infirieron de los datos de alineamientos escalonados y los datos hipervariables excluidos (alineamiento estandarizado), demuestran un mejoramiento en la confiabilidad y un mayor acuerdo tipológico con respecto a otras fuentes que contienen árboles filogenéticos hechos de datos más completos. Esta nueva forma escalonada de filogenia es una de los más compresibles hasta la fecha (en términos de taxones y datos) y que pueden servir como una herramienta de amplificación para probar la hipótesis evolutiva de Zoanthidea.


2021 ◽  
Author(s):  
Caesar Al Jewari ◽  
Sandra L Baldauf

Phylogenomics uses multiple genetic loci to reconstruct evolutionary trees, under the stipulation that all combined loci share a common phylogenetic history, i.e., they are congruent. Congruence is primarily evaluated via single-gene trees, but these trees invariably lack sufficient signal to resolve deep nodes making it difficult to assess congruence at these levels. Two methods were developed to systematically assess congruence in multi-locus data. Protocol 1 uses gene jackknifing to measure deviation from a central mean to identify taxon-specific incongruencies in the form of persistent outliers. Protocol_2 assesses congruence at the sub-gene level using a sliding window. Both protocols were tested on a controversial data set of 76 mitochondrial proteins previously used in various combinations to assess the eukaryote root. Protocol_1 showed a concentration of outliers in under-sampled taxa, including the pivotal taxon Discoba. Further analysis of Discoba using Protocol_2 detected a surprising number of apparently exogenous gene fragments, some of which overlap with Protocol_1 outliers and others that do not. Phylogenetic analyses of the full data using the static LG-gamma evolutionary model support a neozoan-excavate root for eukaryotes (Discoba sister), which rises to 99-100% bootstrap support with data masked according to either Protocol_1 or Protocol_2. In contrast, site-heterogeneous (mixture) models perform inconsistently with these data, yielding all three possible roots depending on presence/absence/type of masking and/or extent of missing data. The neozoan-excavate root places Amorphea (including animals and fungi) and Diaphoretickes (including plants) as more closely related to each other than either is to Discoba (Jakobida, Heterolobosea, and Euglenozoa), regardless of the presence/absence of additional taxa.


2017 ◽  
Author(s):  
August Guang ◽  
Mark Howison ◽  
Felipe Zapata ◽  
Charles Lawrence ◽  
Casey Dunn

AbstractMotivationOne of the most common transcriptome assembly errors is to mistake different transcripts of the same gene as transcripts from multiple closely related genes. It is difficult to identify these errors during assembly, but in a phylogenetic analysis these errors can be diagnosed from gene trees containing clades of tips from the same species with improbably short branch lengths.Resultstreeinform is a module implemented in Agalma1.0 that uses phylogenetic analyses across species to refine transcriptome assemblies. It identifies transcripts of the same gene that were incorrectly assigned to multiple genes and reassign them as transcripts of the same gene.Availability and Implementationtreeinform is implemented in Agalma1.0, available at https://bitbucket.org/caseywdunn/[email protected] informationSupplementary information is available at bioRxiv.


2019 ◽  
Author(s):  
Matthew H. Van Dam ◽  
James B. Henderson ◽  
Lauren Esposito ◽  
Michelle Trautwein

ABSTRACTUltraconserved genomic elements (UCEs), are generally treated as independent loci in phylogenetic analyses. The identification pipeline for UCE probes is agnostic to genetic identity, only selecting loci that are highly conserved, single copy, without repeats, and of a particular length. Here we characterized UCEs from 12 phylogenomic studies across the animal tree of life, from birds to marine invertebrates. We found that within vertebrate lineages, UCEs are mostly intronic and intergenic, while in invertebrates, the majority are in exons. We then curated 4 different sets of UCE markers by genomic category from 5 different studies including; birds, mammals, fish, Hymenoptera (ants, wasps and bees) and Coleoptera (beetles). Of genes captured by UCEs, we find that many are represented by 2 or more UCEs, corresponding to non-overlapping segments of a single gene. We considered these UCEs to be non-independent, merged all UCEs that belonged to a particular gene, constructed gene and species trees, and then evaluated the subsequent effect of merging co-genic UCEs on gene and species tree reconstruction. Average bootstrap support for merged UCE gene trees were significantly improved across all datasets. Increased loci length appears to drive this increase in bootstrap support. Additionally, we found that gene trees generated from merged UCEs were more accurate than those generated by unmerged and randomly merged UCEs, based on our simulation study. This modest degree of UCE characterization and curation impacts downstream analyses and demonstrates the advantages of incorporating basic genomic characterizations into phylogenomic analyses.


Sign in / Sign up

Export Citation Format

Share Document