scholarly journals Haemoglobin polymorphisms affect the oxygen-binding properties in Atlantic cod populations

2008 ◽  
Vol 276 (1658) ◽  
pp. 833-841 ◽  
Author(s):  
Øivind Andersen ◽  
Ola Frang Wetten ◽  
Maria Cristina De Rosa ◽  
Carl Andre ◽  
Cristiana Carelli Alinovi ◽  
...  

A major challenge in evolutionary biology is to identify the genes underlying adaptation. The oxygen-transporting haemoglobins directly link external conditions with metabolic needs and therefore represent a unique system for studying environmental effects on molecular evolution. We have discovered two haemoglobin polymorphisms in Atlantic cod populations inhabiting varying temperature and oxygen regimes in the North Atlantic. Three-dimensional modelling of the tetrameric haemoglobin structure demonstrated that the two amino acid replacements Met55β 1 Val and Lys62β 1 Ala are located at crucial positions of the α 1 β 1 subunit interface and haem pocket, respectively. The replacements are proposed to affect the oxygen-binding properties by modifying the haemoglobin quaternary structure and electrostatic feature. Intriguingly, the same molecular mechanism for facilitating oxygen binding is found in avian species adapted to high altitudes, illustrating convergent evolution in water- and air-breathing vertebrates to reduction in environmental oxygen availability. Cod populations inhabiting the cold Arctic waters and the low-oxygen Baltic Sea seem well adapted to these conditions by possessing the high oxygen affinity Val55–Ala62 haplotype, while the temperature-insensitive Met55–Lys62 haplotype predominates in the southern populations. The distinct distributions of the functionally different haemoglobin variants indicate that the present biogeography of this ecologically and economically important species might be seriously affected by global warming.

1982 ◽  
Vol 99 (1) ◽  
pp. 223-243
Author(s):  
G. P. DOBSON ◽  
J. BALDWIN

1. The regulation of whole blood oxygen affinity in the freshwater blackfish Gadopsis marmoratus Richardson has been examined, and correlations made between oxygen-binding properties and the habitat and swimming behaviour of the fish. 2. Blackfish whole blood has a low oxygen affinity relative to other fish bloods reported in the literature. This is not due to a low oxygen affinity of the stripped haemoglobins, but arises from interactions between haemoglobin and intraerythrocytic modulators. 3. The presence of high concentrations of ATP, and to a lesser extent GTP, in the erythrocyte, together with the effect of these nucleoside triphosphates on the oxygen affinity of haemoglobin solutions at physiological NTP: Hb4 molar ratios, demonstrates that this class of compounds is a major regulator of oxygen affinity in blackfish blood. 4. The oxygen affinities of whole blood and haemoglobin solutions are sensitive to pH, with haemoglobin solutions displaying a relatively large alkaline Bohr coefficient of - 1.05 over the physiologically relevant pH range of 6.5–7.0. 5. Although increasing Pco2, lowers the oxygen affinity of whole blood, it does so only through the effect on pH, as pH-buffered haemoglobin solutions show no oxygen-linked CO2 binding. This lack of oxygen-linked CO2 binding has not been reported for any other naturally occurring vertebrate haemoglobins. 6. Muscle morphology and biochemistry, and behavioural observations, indicate that the blackfish uses anaerobic energy metabolism during rapid swimming and in recovery. 7. It is concluded that the oxygen-binding properties of blackfish blood reflect adaptations for maintaining adequate tissue oxygenation for animals at rest and during slow sustained swimming in waters of high oxygen tensions.


1977 ◽  
Vol 67 (1) ◽  
pp. 77-88
Author(s):  
J. Qvist ◽  
R. E. Weber ◽  
A. L. DeVries ◽  
W. M. Zapol

Blood pH in the antarctic cod (Dissostichus mawsoni) and in two Trematomus species, occlrring at --1-9 degrees C, is extremely high (approximately 8-2 to 8-3). This supports and extends Rahn's (1966) model for the temperature-pH relationship in cold-blooded vertebrates. The blood of D. mawsoni shows a low oxygen affinity (P50 approximately equal to 14-5 mmHg at pH 8–16 and −1-9 degrees C). Despite normal in vitro temperature and pH sensitivities, blood P50 increases only slightly when live fish are temperature-stressed (+ 4-0 degrees C), or become acidotic as a result of agitational stress (blood pH 7–71), primarily as a result of compensatory decreases in blood ATP levels. Oxygen-binding properties of ‘stripped’ (cofactor-free) solutions of D. mawsoni haemoglobin were measured in attempts to elucidate the molecular mechanisms involved in the function of the pigment.


1976 ◽  
Vol 41 (6) ◽  
pp. 893-899 ◽  
Author(s):  
M. P. Hlastala ◽  
H. P. McKenna ◽  
R. L. Franada ◽  
J. C. Detter

The oxygen dissociation curve and Bohr effect were measured in normal whole blood as a function of carboxyhemoglobin concentration [HbCO]. pH was changed by varying CO2 concentration (CO2 Bohr effect) or by addition of isotonic NaOH or HCl at constant PCO2 (fixed acid Bohr effect). As [HbCO] varied through the range of 2, 25, 50, and 75%, P50 was 26.3, 18.0, 11.6, and 6.5 mmHg, respectively. CO2 Bohr effect was highest at low oxygen saturations. This effect did not change as [HbCO] was increased. However, as [HbCO] was increased from 2 to 75%, the fixed acid Bohr factor increased in magnitude from -0.20 to -0.80 at very low oxygen saturations. The effect of molecular CO2 binding (carbamino) on oxygen affinity was eliminated at high [HbCO]. These results are consistent with the initial binding of O2 or CO to thealpha-chain of hemoglobin. The results also suggest that heme-heme interaction is different for oxygen than for carbon monoxide.


2019 ◽  
Author(s):  
Even Sannes Riiser ◽  
Thomas H.A. Haverkamp ◽  
Srinidhi Varadharajan ◽  
Ørnulf Borgan ◽  
Kjetill S. Jakobsen ◽  
...  

AbstractThe biological roles of the intestinal microbiome and how it is impacted by environmental factors are yet to be determined in wild marine fish species. Atlantic cod (Gadus morhua) is an ecologically important species with a wide-spread distribution in the North Atlantic Ocean. 16S rRNA-based amplicon analyses found no geographical differentiation between the intestinal microbiome of Atlantic cod from different locations. Nevertheless, it is unclear if this lack of differentiation results from an insufficient resolution of this method to resolve fine-scaled biological complexity. Here, we take advantage of the increased resolution provided by metagenomic shotgun sequencing to investigate the intestinal microbiome of 19 adult Atlantic cod individuals from two coastal populations in Norway – located 470 km apart. Our results show that the intestinal microbiome is dominated by theVibrionalesorder, consisting of varying abundances ofPhotobacterium, AliivibrioandVibriospecies. Moreover, resolving the species community to unprecedented resolution, we identify two abundant species,P. iliopiscariumandP. kishitanii,which comprise over 50% of the classified reads. Interestingly, genomic data shows that the intestinalP. kishitaniistrains have functionally intactluxgenes, and its high abundance suggests that fish intestines form an important part of its ecological niche. These observations support a hypothesis that bioluminescence plays an ecological role in the marine food web. Despite our improved taxonomical resolution, we identify no geographical differences in bacterial community structure, indicating that the intestinal microbiome of these coastal cod is colonized by a limited number of closely related bacterial species with a broad geographical distribution that are well suited to thrive in this host-associated environment.


1984 ◽  
Vol 109 (1) ◽  
pp. 265-279
Author(s):  
VILHELM TETENS ◽  
RUFUS M. G. WELLS ◽  
ARTHUR L. DEVRIES

1. The effects of thermal acclimation on whole blood oxygen affinity were examined in the antarctic fish Pagothenia borchgrevinki. 2. 4.5°C-acclimated fish had a P50 value of 26.7 mmHg at pH 8.1, compared to 20.7 mmHg for −1.5°C-acclimated fish. The apparent heat of oxygenation, ΔH = −26.7 kJ mol−1, is comparable to values for temperate species. 3. Warm-acclimation was followed by an increased ATP: Hb4 molar ratio, resulting in an augmentation of the thermal effect on oxy-haemoglobin affinity. This may be considered adaptive in a constantly well oxygenated environment, where oxygen loading at the gills is secured. Unloading to the tissues is thereby enhanced, supporting an elevated rate of aerobic metabolism at higher temperatures. 4. In vivo blood pH was high, between 8.10 and 8.25 at −1.5°C. Astrup titration revealed arterial CO2 tensions of less than 0.8 mmHg, indicating relative hyperventilation and low oxygen extraction efficiency in antarctic fish. 5. Blood oxygen affinities of four antarctic nototheniid species were low (P50 between 11.9 and 20.7 mmHg at pH 8.1 and --1.5°C) in comparison with the temperate species Notothenia angustata (P50 = 10.8 mmHg). The zoarcid Rhigophila dearborni had a high blood oxygen affinity (P50 = 4.3 mmHg). Blood oxygen-binding properties are discussed in relation to the polar environment, mode of life, and the concept of cold adaptation.


1999 ◽  
Vol 55 (7) ◽  
pp. 1291-1300 ◽  
Author(s):  
Khoon Tee Chong ◽  
Gentaro Miyazaki ◽  
Hideki Morimoto ◽  
Yutaka Oda ◽  
Sam-Yong Park

The three-dimensional structures of the deoxy- and carbonmonoxyhaemoglobin (Hb) from Dasyatis akajei, a stingray, have been determined at 1.6 and 1.9 Å resolution, respectively. This is one of the most distantly related vertebrate Hbs to human HbA. Both structures resemble the respective forms of HbA, indicating that the α2β2-type tetramer and the mode of the quaternary structure change are common to Hbs of jawed vertebrates. Larger deviations between D. akajei Hb and human HbA are observed in various parts of the molecule, even in the E and F helices. Significant mutations and/or conformational changes are also observed around the haems, in the C-terminal region of the β subunit, in the α1β2 interface and in the organic phosphate-binding site of HbA. Despite these structural differences, the oxygen affinity, haem–haem interaction, Bohr effect and organic phosphate effect of D. akajei Hb are all only moderately reduced. Compared with human HbA, the overall r.m.s. deviation of main-chain atoms in the helical regions of bony fish Hbs is smaller than that of D. akajei Hb.


MRS Bulletin ◽  
1991 ◽  
Vol 16 (9) ◽  
pp. 78-81 ◽  
Author(s):  
Nir Kossovsky ◽  
David Millett

Blood is a dispersion of formed elements in an aqueous colloid. The combined mass of the formed elements of blood measure on average 30 ml per kg body weight, or about the same weight as the liver. The colloidal phase of blood contains numerous organic factors that play important primary and supporting roles in homeostasis, including immune surveillance, coagulation, and nutrient transport.Erythrocytes (red blood cells) are the principle formed elements and provide the life-sustaining function, in conjunction with the heart, lungs, blood vessels and kidneys, of transporting and protecting the oxygen-carrying pigment, hemoglobin, to the tissues. The oxygen-binding properties of hemoglobin are sensitive to factors such as the cooperative effects of O2 binding, pH and CO2 levels, and the presence of other metabolic intermediates such as 2,3-diphosphoglycerate. The synergistic effects of these factors produce a well-known sigmoidal curve plot of the relationship between oxygen affinity and the partial pressure of oxygen (pO2): there is high oxygen affinity in the lung where the pO2 is high, and a low oxygen affinity in the tissues, where the pO2 is low. Uptake and delivery of oxygen by hemoglobin is associated with considerable spatial rearrangement of the hemoglobin molecule.Blood is a non-Newtonian suspension. Its viscosity is a function of both the vascular diameter and the concentration of erythrocytes. At a normal hematocrit of 40%, the viscosity of blood ranges between 2 and 4 Pa s as measured in tubes ranging 10–1,500 μm diameter. The osmolality of blood serum is 275–295 mOsm/1.


Blood ◽  
1997 ◽  
Vol 90 (8) ◽  
pp. 2916-2920 ◽  
Author(s):  
Kazuhiko Adachi ◽  
Patrick Konitzer ◽  
Jian Pang ◽  
Konda S. Reddy ◽  
Saul Surrey

Abstract To clarify the role of γN-terminal Gly, γ5 Glu, and γ143 Ser in 2, 3-biphosphosphoglycerate (BPG) binding to fetal hemoglobin (Hb F ), we engineered and produced normal human Hb F and two Hb F variants (Hb F γG1V, γS143H, and Hb F γG1V, γE5P, γS143H) using a yeast expression system and then compared their oxygen-binding properties with those of native human Hb F and adult Hb (Hb A). Oxygen affinity of Hb F γG1V, γS143H in the absence of 2, 3-BPG was slightly higher than that of normal Hb F. The decrease in oxygen affinities for Hb F γG1V, γS143H with increasing 2, 3-BPG concentrations was larger than that of normal Hb F, but significantly less than that of Hb A. In contrast, oxygen affinities of Hb F γG1V, γE5P, γS143H in the absence and presence of 2, 3-BPG were much lower than those of Hb F γG1V, γS143H and were similar to those of Hb A. These results indicate that differences between Pro and Glu at the A2 position in the A helix in Hb A and Hb F, respectively, are critical for reduced binding of 2, 3-BPG to Hb F, even though β5 Pro does not interact directly with 2, 3-BPG in Hb A. Hb F variants such as Hb F γG1V, γE5P, γS143H, which exhibit reduced oxygen affinity, should facilitate design of efficient antisickling fetal Hb variants for potential use in gene therapy for sickle cell disease.


1976 ◽  
Vol 65 (2) ◽  
pp. 333-345 ◽  
Author(s):  
R. E. Weber ◽  
S. C. Wood ◽  
J. P. Lomholt

Acclimation of rainbow trout to 5, 15 and 22 degrees C for periods exceeding 4 months had no significant effect on the oxygen affinity of whole blood or on the concentration of ATP, which is the main organic phosphate in red cells. Slight differences were, however, found in the oxygenation properties of the haemolysates, which correlate with changes in the relative concentration of the multiple haemoglobins. The oxygen-binding properties of the main haemoglobin components account for the observed differences in the haemolysates. The possible thermoacclimatory significance of changes in haemoglobin multiplicity and co-factor concentrations is discussed.


Sign in / Sign up

Export Citation Format

Share Document