scholarly journals Inbreeding depresses sperm competitiveness, but not fertilization or mating success in male Tribolium castaneum

2010 ◽  
Vol 277 (1699) ◽  
pp. 3483-3491 ◽  
Author(s):  
Łukasz Michalczyk ◽  
Oliver Y. Martin ◽  
Anna L. Millard ◽  
Brent C. Emerson ◽  
Matthew J. G. Gage

As populations decline to levels where reproduction among close genetic relatives becomes more probable, subsequent increases in homozygous recessive deleterious expression and/or loss of heterozygote advantage can lead to inbreeding depression. Here, we measure how inbreeding across replicate lines of the flour beetle Tribolium castaneum impacts on male reproductive fitness in the absence or presence of male–male competition. Effects on male evolution from mating pattern were removed by enforcing monogamous mating throughout. After inbreeding across eight generations, we found that male fertility in the absence of competition was unaffected. However, we found significant inbreeding depression of sperm competitiveness: non-inbred males won 57 per cent of fertilizations in competition, while inbred equivalents only sired 42 per cent. We also found that the P 2 ‘offence’ role in sperm competition was significantly more depressed under inbreeding than sperm ‘defence’ (P 1 ). Mating behaviour did not explain these differences, and there was no difference in the viability of offspring sired by inbred or non-inbred males. Sperm length variation was significantly greater in the ejaculates of inbred males. Our results show that male ability to achieve normal fertilization success was not depressed under strong inbreeding, but that inbreeding depression in these traits occurred when conditions of sperm competition were generated.

2003 ◽  
Vol 12 (2) ◽  
pp. 485-492 ◽  
Author(s):  
A. Oppliger ◽  
Y. Naciri-Graven ◽  
G. Ribi ◽  
D. J. Hosken

1995 ◽  
Vol 350 (1334) ◽  
pp. 391-399 ◽  

Atlantic salmon ( Salmo salar ) males mature as either tiny precocious parr before seaward migration, or as older and larger anadromous males. Anadromous males dominate the spawning redds and aggressively defend females against parr intrusions. Parr gain fertilizations by sneaking in to ejaculate while anadromous males and females spawn. Such differences in mating advantage generate asymmetries in risk of sperm competition between the male strategies. Theoretical sperm competition models predict that males typically mating in disfavoured roles (here, the parr strategy) should be selected to offset this disadvantage by investing more into spermatogenesis to achieve fertilization success. First, we present a theoretical model which analyses gametic expenditure for salmon parr and anadromous male reproductive strategies. We then use the natural variance in mating pattern within this species to compare empirically how males invest in spermatogenesis. A range of reproductive traits were measured for both male strategies. Absolutely, anadromous males have larger testes and produce greater numbers of sperm than parr males. However, results show that parr invest relatively more heavily into total spermatogenesis, and have a larger gonosomatic index than anadromous males. Relative to body size, parr produced greater numbers of sperm and volumes of stripped ejaculate. There was no difference in sperm length between the two male strategies. However, more sperm were motile in parr ejaculates, and these sperm lived longer than anadromous male sperm. Our findings may explain how male parr, under elevated risks of sperm competition and occupying a disfavoured mating role (parr weigh only 0.15% of the average body mass of anadromous males) achieve disproportionately high fertilization success.


Behaviour ◽  
1999 ◽  
Vol 136 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Eric Haubruge ◽  
Ludovic Arnaud

Mate choice by males has received less attention than female choice, despite the recognition that males can incur non-trivial reproductive costs through mating. In this study we investigate male mate choice in the red flour beetle, Tribolium castaneum. We determine whether male beetles have evolved sensitivity that enables them to discriminate between females and we then examine how males discriminate between females that present different reproductive potentials. Recently-emerged adult females are immature, and we investigate when egg-laying maturity develops, and whether male mating attempts with immature females provide reproductive pay-offs. We show that males are the sex most likely to initiate mating attempts (more than 85% of male-female contacts are male-initiated). Therefore, we test male mating initiations when presented with choices between: (i) immature and mature virgin females; (ii) mature virgin females and previously mated mature females; and (iii) mature females previously mated either with different male or with the test males. Last male sperm precedence exists in T. castaneum and females are polyandrous. Matings with immature females are therefore likely to generate lower fertilization successes than matings with mature females. Furthermore, males are likely to achieve higher total fertilization success when they mate if they precede a rival male's sperm than if they precede their own sperm. Accordingly, we find that: (i) males copulate more frequently with mature, than with immature females; (ii) males do differentiate between virgin and mated females; and (iii) males prefer females that have been inseminated by a different male to those previously inseminated by the test males themselves. The results demonstrate that male T. castaneum recognise female status, display mate choice, and prefer to inseminate females which provide greater reproductive potential.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20141897 ◽  
Author(s):  
Clair Bennison ◽  
Nicola Hemmings ◽  
Jon Slate ◽  
Tim Birkhead

Sperm competition, in which the ejaculates of multiple males compete to fertilize a female's ova, results in strong selection on sperm traits. Although sperm size and swimming velocity are known to independently affect fertilization success in certain species, exploring the relationship between sperm length, swimming velocity and fertilization success still remains a challenge. Here, we use the zebra finch ( Taeniopygia guttata ), where sperm size influences sperm swimming velocity, to determine the effect of sperm total length on fertilization success. Sperm competition experiments, in which pairs of males whose sperm differed only in length and swimming speed, revealed that males producing long sperm were more successful in terms of (i) the number of sperm reaching the ova and (ii) fertilizing those ova. Our results reveal that although sperm length is the main factor determining the outcome of sperm competition, complex interactions between male and female reproductive traits may also be important. The mechanisms underlying these interactions are poorly understood, but we suggest that differences in sperm storage and utilization by females may contribute to the outcome of sperm competition.


2021 ◽  
Author(s):  
Jake Galvin ◽  
Erica Larson ◽  
Sevan Yedigarian ◽  
Mohammad Rahman ◽  
Kirill Borziak ◽  
...  

Spermatozoal morphology is highly variable both among and within species and in ways that can significantly impact fertilization success. In Drosophila melanogaster, paternity success depends on sperm length of both competing males and length of the female's primary sperm storage organ. We found that genes upregulated in long sperm testes are enriched for lncRNAs and seminal fluid proteins (Sfps). Transferred in seminal fluid to the female during mating, Sfps are secreted by the male accessory glands (AG) and affect female remating rate, physiology, and behavior with concomitant advantages for male reproductive success. Despite being upregulated in long sperm testes, they have no known function in testis tissue. We found that Sex Peptide and ovulin (Acp26Aa) knockouts resulted in shorter sperm, suggesting that Sfps may regulate sperm length during spermatogenesis. However, knockout of AG function did not affect sperm length, suggesting that AG expression has no influence on spermatogenic processes. We also found that long sperm males are better able to delay female remating, suggesting higher Sfp expression in AG. These results might suggest that long sperm males have a double advantage in sperm competition by both delaying female remating, likely through transfer of more Sfps, and by resisting sperm displacement. However, we also found that this extra advantage does not necessarily translate to more progeny or higher paternity success. Thus, we found that multiple components of the ejaculate coordinate to promote male reproductive success at different stages of reproduction, but the realized fitness advantages in sperm competition are uncertain.


1998 ◽  
Vol 76 (1) ◽  
pp. 70-75 ◽  
Author(s):  
I B Mjølnerød ◽  
I A Fleming ◽  
U H Refseth ◽  
K Hindar

The influence of sperm competition and individual mating behaviour in an externally fertilizing species of fish, the Atlantic salmon (Salmo salar), is estimated from video observations of multiple-male spawnings and subsequent paternity analyses. One male dominated the paternity during polygamous spawnings, fathering more than 80% of the progeny in a single nest. Behavioural analyses of the spawnings showed that the first-mating male had sperm precedence in 6 out of 10 cases. In three of the other spawnings, sperm limitation likely influenced individual success, as the first-mating male had participated in a large number of spawnings. In the final, nearly simultaneous spawning, male size was more important than the 0.6-s difference in spawning times. Thus, male fertilization success can be influenced by a variety of factors, including sperm precedence, male size, and spawning history.


2013 ◽  
Vol 26 (11) ◽  
pp. 2341-2349 ◽  
Author(s):  
M. D. Sharma ◽  
A. M. Minder ◽  
D. J. Hosken

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

The harmful impacts of inbreeding are generally greater in species that naturally outbreed compared to those in inbreeding species, greater in stressful than benign environments, greater for fitness than peripheral traits, and greater for total fitness compared to its individual components. Inbreeding reduces survival and reproduction (i.e., it causes inbreeding depression), and thereby increases the risk of extinction. Inbreeding depression is due to increased homozygosity for harmful alleles and at loci exhibiting heterozygote advantage. Natural selection may remove (purge) the alleles that cause inbreeding depression, especially following inbreeding or population bottlenecks, but it has limited effects in small populations and usually does not completely eliminate inbreeding depression. Inbreeding depression is nearly universal in sexually reproducing organisms that are diploid or have higher ploidies.


2005 ◽  
Vol 83 (12) ◽  
pp. 1638-1642 ◽  
Author(s):  
Albrecht I Schulte-Hostedde ◽  
Gary Burness

Sperm competition results in the evolution of ejaculate characteristics such as high sperm density, high motility, and fast sperm swimming speed. A fundamental assumption of sperm competition theory is that ejaculates with high motility and fast-swimming sperm have an advantage with respect to fertilization success. We tested this assumption by studying the fertilization dynamics of alternative mating tactics (cuckolders and parentals) of male bluegill (Lepomis macrochirus Rafinesque, 1819). Sneakers (cuckolders) have faster swimming sperm and a higher proportion of motile sperm immediately following sperm activation than do parentals; however, these variables decline more quickly over time in sneaker sperm than in the sperm of parental males. We used a controlled fertilization experiment to test the prediction that parental males will have higher fertilization success than sneakers late in the sperm activation cycle because of the reduced rate of decline in ejaculate quality over time. We found that as the time from sperm activation increases parental sperm fertilizes more eggs than the sperm of sneakers. Our results support the idea that fertilization success is higher when ejaculates contain a higher proportion of either motile sperm or faster swimming sperm, all else being equal. In addition, after controlling for time from sperm activation, we found a significant bias in fertilization success toward parental males, suggesting that cryptic female choice might play a role in fertilization dynamics.


Sign in / Sign up

Export Citation Format

Share Document