Fertilization dynamics of sperm from different male mating tactics in bluegill (Lepomis macrochirus)

2005 ◽  
Vol 83 (12) ◽  
pp. 1638-1642 ◽  
Author(s):  
Albrecht I Schulte-Hostedde ◽  
Gary Burness

Sperm competition results in the evolution of ejaculate characteristics such as high sperm density, high motility, and fast sperm swimming speed. A fundamental assumption of sperm competition theory is that ejaculates with high motility and fast-swimming sperm have an advantage with respect to fertilization success. We tested this assumption by studying the fertilization dynamics of alternative mating tactics (cuckolders and parentals) of male bluegill (Lepomis macrochirus Rafinesque, 1819). Sneakers (cuckolders) have faster swimming sperm and a higher proportion of motile sperm immediately following sperm activation than do parentals; however, these variables decline more quickly over time in sneaker sperm than in the sperm of parental males. We used a controlled fertilization experiment to test the prediction that parental males will have higher fertilization success than sneakers late in the sperm activation cycle because of the reduced rate of decline in ejaculate quality over time. We found that as the time from sperm activation increases parental sperm fertilizes more eggs than the sperm of sneakers. Our results support the idea that fertilization success is higher when ejaculates contain a higher proportion of either motile sperm or faster swimming sperm, all else being equal. In addition, after controlling for time from sperm activation, we found a significant bias in fertilization success toward parental males, suggesting that cryptic female choice might play a role in fertilization dynamics.

2007 ◽  
Vol 274 (1615) ◽  
pp. 1309-1315 ◽  
Author(s):  
Clarissa M House ◽  
John Hunt ◽  
Allen J Moore

Fertilization success in sperm competition is often determined by laboratory estimates of the proportion of offspring sired by the first ( P 1 ) or second ( P 2 ) male that mates. However, inferences from such data about how sexual selection acts on male traits in nature may be misleading if fertilization success depends on the biological context in which it is measured. We used the sterile male technique to examine the paternity of the same male in two mating contexts in the burying beetle, Nicrophorus vespilloides , a species where males have alternative mating strategies based on the presence or absence of resources. We found no congruence in the paternity achieved by a given male when mating under different social conditions. P 2 estimates were extremely variable under both conditions. Body size was unrelated to success in sperm competition away from a carcass but, most probably through pre-copulatory male–male competition, influenced fertilization success on a carcass. The contribution of sperm competition is therefore dependent on the conditions under which it is measured. We discuss our findings in relation to sperm competition theory and highlight the need to consider biological context in order to link copulation and fertilization success for competing males.


2008 ◽  
Vol 276 (1655) ◽  
pp. 383-388 ◽  
Author(s):  
Melissa L Thomas ◽  
Leigh W Simmons

Female sexual promiscuity can have significant effects on male mating decisions because it increases the intensity of competition between ejaculates for fertilization. Because sperm production is costly, males that can detect multiple matings by females and allocate sperm strategically will have an obvious fitness advantage. The presence of rival males is widely recognized as a cue used by males to assess sperm competition. However, for species in which males neither congregate around nor guard females, other more cryptic cues might be involved. Here, we demonstrate unprecedented levels of sperm competition assessment by males, which is mediated via the use of chemical cues. Using the cricket Teleogryllus oceanicus , we manipulated male perception of sperm competition by experimentally coating live unmated females with cuticular compounds extracted from males. We found that males adjusted their ejaculate allocation in response to these compounds: the viability of sperm contained within a male's ejaculate decreased as the number of male extracts applied to his virgin female partner was increased. We further show that males do not respond to the relative concentration of male compounds present on females, but rather to the number of distinct signature odours of individual males. Our results conform to sperm competition theory, and show for the first time, to our knowledge, that males can detect different intensities of sperm competition by using distinct chemical cues of individual males present on females.


1995 ◽  
Vol 350 (1334) ◽  
pp. 391-399 ◽  

Atlantic salmon ( Salmo salar ) males mature as either tiny precocious parr before seaward migration, or as older and larger anadromous males. Anadromous males dominate the spawning redds and aggressively defend females against parr intrusions. Parr gain fertilizations by sneaking in to ejaculate while anadromous males and females spawn. Such differences in mating advantage generate asymmetries in risk of sperm competition between the male strategies. Theoretical sperm competition models predict that males typically mating in disfavoured roles (here, the parr strategy) should be selected to offset this disadvantage by investing more into spermatogenesis to achieve fertilization success. First, we present a theoretical model which analyses gametic expenditure for salmon parr and anadromous male reproductive strategies. We then use the natural variance in mating pattern within this species to compare empirically how males invest in spermatogenesis. A range of reproductive traits were measured for both male strategies. Absolutely, anadromous males have larger testes and produce greater numbers of sperm than parr males. However, results show that parr invest relatively more heavily into total spermatogenesis, and have a larger gonosomatic index than anadromous males. Relative to body size, parr produced greater numbers of sperm and volumes of stripped ejaculate. There was no difference in sperm length between the two male strategies. However, more sperm were motile in parr ejaculates, and these sperm lived longer than anadromous male sperm. Our findings may explain how male parr, under elevated risks of sperm competition and occupying a disfavoured mating role (parr weigh only 0.15% of the average body mass of anadromous males) achieve disproportionately high fertilization success.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 231
Author(s):  
Melissah Rowe ◽  
Annabel van Oort ◽  
Lyanne Brouwer ◽  
Jan T. Lifjeld ◽  
Michael S. Webster ◽  
...  

Sperm competition is thought to impose strong selection on males to produce competitive ejaculates to outcompete rival males under competitive mating conditions. Our understanding of how different sperm traits influence fertilization success, however, remains limited, especially in wild populations. Recent literature highlights the importance of incorporating multiple ejaculate traits and pre-copulatory sexually selected traits in analyses aimed at understanding how selection acts on sperm traits. However, variation in a male’s ability to gain fertilization success may also depend upon a range of social and ecological factors that determine the opportunity for mating events both within and outside of the social pair-bond. Here, we test for an effect of sperm quantity and sperm size on male reproductive success in the red-back fairy-wren (Malurus melanocephalus) while simultaneously accounting for pre-copulatory sexual selection and potential socio-ecological correlates of male mating success. We found that sperm number (i.e., cloacal protuberance volume), but not sperm morphology, was associated with reproductive success in male red-backed fairy-wrens. Most notably, males with large numbers of sperm available for copulation achieved greater within-pair paternity success. Our results suggest that males use large sperm numbers as a defensive strategy to guard within-pair paternity success in a system where there is a high risk of sperm competition and female control of copulation. Finally, our work highlights the importance of accounting for socio-ecological factors that may influence male mating opportunities when examining the role of sperm traits in determining male reproductive success.


2020 ◽  
Vol 375 (1813) ◽  
pp. 20200073
Author(s):  
Cristina Tuni ◽  
Jutta Schneider ◽  
Gabriele Uhl ◽  
Marie E. Herberstein

Aggressive and cannibalistic female spiders can impose strong selection on male mating and fertilization strategies. Furthermore, the distinctive reproductive morphology of spiders is predicted to influence the outcome of sperm competition. Polyandry is common in spiders, leading to defensive male strategies that include guarding, plugging and self-sacrifice. Paternity patterns are highly variable and unlikely to be determined solely by mating order, but rather by relative copulation duration, deployment of plugs and cryptic female choice. The ability to strategically allocate sperm is limited, either by the need to refill pedipalps periodically or owing to permanent sperm depletion after mating. Further insights now rely on unravelling several proximate mechanisms such as the process of sperm activation and the role of seminal fluids. This article is part of the theme issue ‘Fifty years of sperm competition’.


2013 ◽  
Vol 280 (1755) ◽  
pp. 20122891 ◽  
Author(s):  
Lisa Locatello ◽  
Federica Poli ◽  
Maria B. Rasotto

Seminal fluid often makes up a large part of an ejaculate, yet most empirical and theoretical studies on sperm competition have focused on how sperm characteristics (number and quality) affect fertilization success. However, seminal fluid influences own sperm performance and may potentially influence the outcome of sperm competition, by also affecting that of rivals. As a consequence males may be expected to allocate their investment in both sperm and seminal fluid in relation to the potential level of competition. Grass goby ( Zosterisessor ophiocephalus ) is an external fertilizer with guard-sneaker mating tactics, where sperm competition risk varies according to the tactic adopted. Here, we experimentally manipulated grass goby ejaculates by separately combining sperm and seminal fluid from territorial and sneaker males. While sperm of sneaker and territorial males did not differ in their performance when they interacted with their own seminal fluid only, sperm of sneakers increased their velocity and fertilization rate in the presence of territorial males' seminal fluid. By contrast, sneaker males' seminal fluid had a detrimental effect on the performance of territorial males' sperm. Sperm velocity was unaffected by the seminal fluid of males employing the same tactic, suggesting that seminal fluid's effect on rival-tactic sperm is not based on a self/non-self recognition mechanism. Our findings show that cross interactions of sperm and seminal fluid may influence the fertilization success of competing ejaculates with males investing in both sperm and seminal fluid in response to sperm competition risk.


Behaviour ◽  
2013 ◽  
Vol 150 (14) ◽  
pp. 1709-1730 ◽  
Author(s):  
Carl Smith ◽  
Martin Reichard

Sperm competition occurs when the spermatozoa of one male coincide with those of another to fertilise the same eggs. In some taxa males perform multiple ejaculations, which may function in sperm competition or in maintaining a baseline density of spermatozoa in the female reproductive tract to ensure fertilisation, a process that has been termed ‘topping up’. We investigated multiple ejaculations in the European bitterling (Rhodeus amarus), a freshwater fish that oviposits in freshwater mussels. We quantified spermatozoa in the mussel mantle cavity following ejaculation, and measured sperm motility parameters of males adopting different mating tactics. Following ejaculation spermatozoa density in the mussel increased linearly, peaked after 30 s, and then declined exponentially. Spermatozoa motility parameters did not differ between male mating tactics. We parameterised a model of sperm competition forR. amarus, which accurately predicted male fertilisation probability. We discuss these results in the context of multiple ejaculations and male mating tactics.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lennart Winkler ◽  
Anna K. Lindholm ◽  
Steven A. Ramm ◽  
Andreas Sutter

AbstractThe vast variation observed in genital morphology is a longstanding puzzle in evolutionary biology. Studies showing that the morphology of the mammalian baculum (penis bone) can covary with a male’s paternity success indicate a potential impact of baculum morphology on male fitness, likely through influencing sperm competition outcomes. We therefore measured the size (measurements of length and width) and shape (geometric morphometric measurements) of the bacula of male house mice used in previously published sperm competition experiments, in which two males mated successively with the same female in staged matings. This enabled us to correlate baculum morphology with sperm competition success, incorporating potential explanatory variables related to copulatory plugs, male mating behavior and a selfish genetic element that influences sperm motility. We found that a wider baculum shaft increased a male’s paternity share when mating first, but not when mating second with a multiply-mating female. Geometric morphometric shape measurements were not clearly associated with fertilization success for either male. We found limited evidence that the effect of baculum morphology on male fertilization success was altered by experimental removal of the copulatory plug. Furthermore, neither genetic differences in sperm motility, nor covariation with male mating behavior mediated the effect of baculum morphology on male fertilization success. Taken together with previous findings, the mating-order effects we found here suggest that baculum-mediated stimulation by the first male might be particularly important for fertilization.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lenka Sentenská ◽  
Aileen Neumann ◽  
Yael Lubin ◽  
Gabriele Uhl

Abstract Background Mating generally occurs after individuals reach adulthood. In many arthropods including spiders, the adult stage is marked by a final moult after which the genitalia are fully developed and functional. In several widow spider species (genus Latrodectus), however, immature females may mate a few days before they moult to adulthood, i.e. in their late-subadult stage. While the “adult” mating typically results in cannibalism, males survive the “immature” mating. During both “immature” and “adult” matings, males leave parts of their paired copulatory organs within female genitalia, which may act as mating plugs. To study potential costs and benefits of the two mating tactics, we investigated female genital morphology of the brown widow spider, L. geometricus. Light microscopy, histology and micro-computed tomography of early-subadult, late-subadult and adult females were conducted to determine the overall pattern of genital maturation. We compared genitalia of mated late-subadult and adult females to reveal potential differences in the genitalic details that might indicate differential success in sperm transfer and different environments for sperm storage and sperm competition. Results We found that the paired sperm storage organs (spermathecae) and copulatory ducts are developed already in late-subadult females and host sperm after immature mating. However, the thickness of the spermathecal cuticle and the staining of the secretions inside differ significantly between the late-subadult and adult females. In late-subadult females mating plugs were found with higher probability in both spermathecae compared to adult females. Conclusions Sperm transfer in matings with late-subadult females follows the same route as in matings with adult females. The observed differences in the secretions inside the spermathecae of adult and late-subadult females likely reflect different storage conditions for the transferred sperm which may lead to a disadvantage under sperm competition if the subadult female later re-mates with another male. However, since males mating with late-subadult females typically transfer sperm to both spermathecae they might benefit from numerical sperm competition as well as from monopolizing access to the female sperm storage organs. The assessment of re-mating probability and relative paternity will clarify the costs and benefits of the two mating tactics in light of these findings.


Sign in / Sign up

Export Citation Format

Share Document