Sperm length influences fertilization success during sperm competition in the snail Viviparus ater

2003 ◽  
Vol 12 (2) ◽  
pp. 485-492 ◽  
Author(s):  
A. Oppliger ◽  
Y. Naciri-Graven ◽  
G. Ribi ◽  
D. J. Hosken
2010 ◽  
Vol 277 (1699) ◽  
pp. 3483-3491 ◽  
Author(s):  
Łukasz Michalczyk ◽  
Oliver Y. Martin ◽  
Anna L. Millard ◽  
Brent C. Emerson ◽  
Matthew J. G. Gage

As populations decline to levels where reproduction among close genetic relatives becomes more probable, subsequent increases in homozygous recessive deleterious expression and/or loss of heterozygote advantage can lead to inbreeding depression. Here, we measure how inbreeding across replicate lines of the flour beetle Tribolium castaneum impacts on male reproductive fitness in the absence or presence of male–male competition. Effects on male evolution from mating pattern were removed by enforcing monogamous mating throughout. After inbreeding across eight generations, we found that male fertility in the absence of competition was unaffected. However, we found significant inbreeding depression of sperm competitiveness: non-inbred males won 57 per cent of fertilizations in competition, while inbred equivalents only sired 42 per cent. We also found that the P 2 ‘offence’ role in sperm competition was significantly more depressed under inbreeding than sperm ‘defence’ (P 1 ). Mating behaviour did not explain these differences, and there was no difference in the viability of offspring sired by inbred or non-inbred males. Sperm length variation was significantly greater in the ejaculates of inbred males. Our results show that male ability to achieve normal fertilization success was not depressed under strong inbreeding, but that inbreeding depression in these traits occurred when conditions of sperm competition were generated.


1995 ◽  
Vol 350 (1334) ◽  
pp. 391-399 ◽  

Atlantic salmon ( Salmo salar ) males mature as either tiny precocious parr before seaward migration, or as older and larger anadromous males. Anadromous males dominate the spawning redds and aggressively defend females against parr intrusions. Parr gain fertilizations by sneaking in to ejaculate while anadromous males and females spawn. Such differences in mating advantage generate asymmetries in risk of sperm competition between the male strategies. Theoretical sperm competition models predict that males typically mating in disfavoured roles (here, the parr strategy) should be selected to offset this disadvantage by investing more into spermatogenesis to achieve fertilization success. First, we present a theoretical model which analyses gametic expenditure for salmon parr and anadromous male reproductive strategies. We then use the natural variance in mating pattern within this species to compare empirically how males invest in spermatogenesis. A range of reproductive traits were measured for both male strategies. Absolutely, anadromous males have larger testes and produce greater numbers of sperm than parr males. However, results show that parr invest relatively more heavily into total spermatogenesis, and have a larger gonosomatic index than anadromous males. Relative to body size, parr produced greater numbers of sperm and volumes of stripped ejaculate. There was no difference in sperm length between the two male strategies. However, more sperm were motile in parr ejaculates, and these sperm lived longer than anadromous male sperm. Our findings may explain how male parr, under elevated risks of sperm competition and occupying a disfavoured mating role (parr weigh only 0.15% of the average body mass of anadromous males) achieve disproportionately high fertilization success.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20141897 ◽  
Author(s):  
Clair Bennison ◽  
Nicola Hemmings ◽  
Jon Slate ◽  
Tim Birkhead

Sperm competition, in which the ejaculates of multiple males compete to fertilize a female's ova, results in strong selection on sperm traits. Although sperm size and swimming velocity are known to independently affect fertilization success in certain species, exploring the relationship between sperm length, swimming velocity and fertilization success still remains a challenge. Here, we use the zebra finch ( Taeniopygia guttata ), where sperm size influences sperm swimming velocity, to determine the effect of sperm total length on fertilization success. Sperm competition experiments, in which pairs of males whose sperm differed only in length and swimming speed, revealed that males producing long sperm were more successful in terms of (i) the number of sperm reaching the ova and (ii) fertilizing those ova. Our results reveal that although sperm length is the main factor determining the outcome of sperm competition, complex interactions between male and female reproductive traits may also be important. The mechanisms underlying these interactions are poorly understood, but we suggest that differences in sperm storage and utilization by females may contribute to the outcome of sperm competition.


2021 ◽  
Author(s):  
Jake Galvin ◽  
Erica Larson ◽  
Sevan Yedigarian ◽  
Mohammad Rahman ◽  
Kirill Borziak ◽  
...  

Spermatozoal morphology is highly variable both among and within species and in ways that can significantly impact fertilization success. In Drosophila melanogaster, paternity success depends on sperm length of both competing males and length of the female's primary sperm storage organ. We found that genes upregulated in long sperm testes are enriched for lncRNAs and seminal fluid proteins (Sfps). Transferred in seminal fluid to the female during mating, Sfps are secreted by the male accessory glands (AG) and affect female remating rate, physiology, and behavior with concomitant advantages for male reproductive success. Despite being upregulated in long sperm testes, they have no known function in testis tissue. We found that Sex Peptide and ovulin (Acp26Aa) knockouts resulted in shorter sperm, suggesting that Sfps may regulate sperm length during spermatogenesis. However, knockout of AG function did not affect sperm length, suggesting that AG expression has no influence on spermatogenic processes. We also found that long sperm males are better able to delay female remating, suggesting higher Sfp expression in AG. These results might suggest that long sperm males have a double advantage in sperm competition by both delaying female remating, likely through transfer of more Sfps, and by resisting sperm displacement. However, we also found that this extra advantage does not necessarily translate to more progeny or higher paternity success. Thus, we found that multiple components of the ejaculate coordinate to promote male reproductive success at different stages of reproduction, but the realized fitness advantages in sperm competition are uncertain.


2005 ◽  
Vol 83 (12) ◽  
pp. 1638-1642 ◽  
Author(s):  
Albrecht I Schulte-Hostedde ◽  
Gary Burness

Sperm competition results in the evolution of ejaculate characteristics such as high sperm density, high motility, and fast sperm swimming speed. A fundamental assumption of sperm competition theory is that ejaculates with high motility and fast-swimming sperm have an advantage with respect to fertilization success. We tested this assumption by studying the fertilization dynamics of alternative mating tactics (cuckolders and parentals) of male bluegill (Lepomis macrochirus Rafinesque, 1819). Sneakers (cuckolders) have faster swimming sperm and a higher proportion of motile sperm immediately following sperm activation than do parentals; however, these variables decline more quickly over time in sneaker sperm than in the sperm of parental males. We used a controlled fertilization experiment to test the prediction that parental males will have higher fertilization success than sneakers late in the sperm activation cycle because of the reduced rate of decline in ejaculate quality over time. We found that as the time from sperm activation increases parental sperm fertilizes more eggs than the sperm of sneakers. Our results support the idea that fertilization success is higher when ejaculates contain a higher proportion of either motile sperm or faster swimming sperm, all else being equal. In addition, after controlling for time from sperm activation, we found a significant bias in fertilization success toward parental males, suggesting that cryptic female choice might play a role in fertilization dynamics.


Author(s):  
Patricia L.R. Brennan ◽  
Dara N. Orbach

The field of post-copulatory sexual selection investigates how female and male adaptations have evolved to influence the fertilization of eggs while optimizing fitness during and after copulation, when females mate with multiple males. When females are polyandrous (one female mates with multiple males), they may optimize their mating rate and control the outcome of mating interactions to acquire direct and indirect benefits. Polyandry may also favor the evolution of male traits that offer an advantage in post-copulatory male-male sperm competition. Sperm competition occurs when the sperm, seminal fluid, and/or genitalia of one male directly impacts the outcome of fertilization success of a rival male. When a female mates with multiple males, she may use information from a number of traits to choose who will sire her offspring. This cryptic female choice (CFC) to bias paternity can be based on behavioral, physiological, and morphological criteria (e.g., copulatory courtship, volume and/or composition of seminal fluid, shape of grasping appendages). Because male fitness interests are rarely perfectly aligned with female fitness interests, sexual conflict over mating and fertilization commonly occur during copulatory and post-copulatory interactions. Post-copulatory interactions inherently involve close associations between female and male reproductive characteristics, which in many species potentially include sperm storage and sperm movement inside the female reproductive tract, and highlight the intricate coevolution between the sexes. This coevolution is also common in genital morphology. The great diversity of genitalia among species is attributed to sexual selection. The evolution of genital attributes that allow females to maintain reproductive autonomy over paternity via cryptic female choice or that prevent male manipulation and sexual control via sexually antagonistic coevolution have been well documented. Additionally, cases where genitalia evolve through intrasexual competition are well known. Another important area of study in post-copulatory sexual selection is the examination of trade-offs between investments in pre-copulatory and post-copulatory traits, since organisms have limited energetic resources to allocate to reproduction, and securing both mating and fertilization is essential for reproductive success.


2013 ◽  
Vol 280 (1772) ◽  
pp. 20132047 ◽  
Author(s):  
Jonathan P. Evans ◽  
Patrice Rosengrave ◽  
Clelia Gasparini ◽  
Neil J. Gemmell

Disentangling the relative roles of males, females and their interactive effects on competitive fertilization success remains a challenge in sperm competition. In this study, we apply a novel experimental framework to an ideally suited externally fertilizing model system in order to delineate these roles. We focus on the chinook salmon, Oncorhynchus tshawytscha , a species in which ovarian fluid (OF) has been implicated as a potential arbiter of cryptic female choice for genetically compatible mates. We evaluated this predicted sexually selected function of OF using a series of factorial competitive fertilization trials. Our design involved a series of 10 factorial crosses, each involving two ‘focal’ rival males whose sperm competed against those from a single ‘standardized’ (non-focal) rival for a genetically uniform set of eggs in the presence of OF from two focal females. This design enabled us to attribute variation in competitive fertilization success among focal males, females (OF) and their interacting effects, while controlling for variation attributable to differences in the sperm competitive ability of rival males, and male-by-female genotypic interactions. Using this experimental framework, we found that variation in sperm competitiveness could be attributed exclusively to differences in the sperm competitive ability of focal males, a conclusion supported by subsequent analyses revealing that variation in sperm swimming velocity predicts paternity success. Together, these findings provide evidence that variation in paternity success can be attributed to intrinsic differences in the sperm competitive ability of rival males, and reveal that sperm swimming velocity is a key target of sexual selection.


2018 ◽  
Vol 14 (1) ◽  
pp. 20170659 ◽  
Author(s):  
Nadia S. Sloan ◽  
Maxine Lovegrove ◽  
Leigh W. Simmons

A considerable body of evidence supports the prediction that males should increase their expenditure on the ejaculate in response to sperm competition risk. The prediction that they should reduce their expenditure with increasing sperm competition intensity is less well supported. Moreover, most studies have documented plasticity in sperm numbers. Here we show that male crickets Teleogryllus oceanicus exhibit reduced seminal fluid gene expression and accessory gland mass in response to elevated sperm competition intensity. Together with previous research, our findings suggest that strategic adjustments in seminal fluid composition contribute to competitive fertilization success in this species.


Sign in / Sign up

Export Citation Format

Share Document