scholarly journals Flight in slow motion: aerodynamics of the pterosaur wing

2010 ◽  
Vol 278 (1713) ◽  
pp. 1881-1885 ◽  
Author(s):  
Colin Palmer

The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed before, suggesting that large pterosaurs were aerodynamically less efficient and could fly more slowly than previously estimated. In order to achieve higher efficiency, the wing bones must be faired, which implies extensive regions of pneumatized tissue. Whether faired or not, the pterosaur wings were adapted to low-speed flight, unsuited to marine style dynamic soaring but adapted for thermal/slope soaring and controlled, low-speed landing. Because their thin-walled bones were susceptible to impact damage, slow flight would have helped to avoid injury and may have contributed to their attaining much larger sizes than fossil or extant birds. The trade-off would have been an extreme vulnerability to strong or turbulent winds both in flight and on the ground, akin to modern-day paragliders.

Author(s):  
Stephen McParlin ◽  
Robin Bruce ◽  
Anthony Hepworth ◽  
Andrew Rae

Author(s):  
Colin P Britcher ◽  
John M Wells ◽  
Benoit Renaud ◽  
Thibaut Buvat

Some aerodynamic issues affecting low-speed Urban Maglev vehicles are studied, focusing primarily on the effect of ambient winds on levitation electromagnet loads. Aerodynamic characteristics of a representative vehicle are estimated by means of wind tunnel tests of a 1/12th scale model. The wind environment influencing the existing Maglev guideway at Old Dominion University are established from historical data. It is shown that ambient winds, particularly crosswinds, can pose significant challenges, including substantial redistribution of levitation forces among vehicle electromagnets. The development of large lateral forces, particularly at the forward electromagnet stations, may also be of concern.


Author(s):  
S. Fischer ◽  
H. Saathoff ◽  
R. Radespiel

Experimental and numerical results for the flow through a stator cascade with active flow control are discussed. By blowing air through a slot close to the trailing edge of the aerofoils, the deflection angle as well as the static pressure rise in the stator are increased. The aerofoil design is representative for a 1st-stage stator geometry of a multi-stage compressor adapted for low–speed applications. To allow a reasonable transfer of the high-speed results to low-speed wind tunnel conditions, a corresponding cascade geometry was generated applying the Prandtl–Glauert analogy. With this modified cascade numerical simulations and experiments have been conducted at a Reynolds number of 5 · 105. As a reference case two-dimensional flow simulations without circulation control are considered using a Navier–Stokes solver. In the related wind tunnel tests three–dimensional conditions occur in the test rig. Nevertheless five–hole probe measurements in the wake of the blade mid section show a good agreement with the theoretical characteristics. Additional investigation along the whole blade span gives a deeper insight into the flow topology. For design conditions different blowing rates are applied. The wind tunnel tests confirm the positive benefit, which is predicted by two-dimensional calculations. The offset between simulated and measured pressure rise decreases with increasing blowing mass flows due to the reduction of the axial velocity ratio. This result is related to a redistribution of the passage flow which can only be explained in a three–dimensional analysis including the side wall influence. The benefit of the circulation control at varying blowing rates is finally characterized by the efficiency and the static pressure rise per injected energy.


2011 ◽  
Vol 2 (4) ◽  
pp. 383-405 ◽  
Author(s):  
Markus Kintscher ◽  
Martin Wiedemann ◽  
Hans Peter Monner ◽  
Olaf Heintze ◽  
Timo Kühn

1977 ◽  
Author(s):  
William H. Rae ◽  
Shindo Jr. ◽  
Shojiro

1995 ◽  
Author(s):  
Robert Pegg ◽  
David Hahne ◽  
Charles Cockrell, s E, Jr

Sign in / Sign up

Export Citation Format

Share Document