scholarly journals Requirements for plant coexistence through pollination niche partitioning

2015 ◽  
Vol 282 (1810) ◽  
pp. 20150117 ◽  
Author(s):  
Gita Benadi

Plant–pollinator interactions are often thought to have been a decisive factor in the diversification of flowering plants, but to be of little or no importance for the maintenance of existing plant diversity. In a recent opinion paper, Pauw (2013 Trends Ecol. Evol . 28, 30–37. ( doi:10.1016/j.tree.2012.07.019 )) challenged this view by proposing a mechanism of diversity maintenance based on pollination niche partitioning. In this article, I investigate under which conditions the mechanism suggested by Pauw can promote plant coexistence, using a mathematical model of plant and pollinator population dynamics. Numerical simulations show that this mechanism is most effective when the costs of searching for flowers are low, pollinator populations are strongly limited by resources other than pollen and nectar, and plant–pollinator interactions are sufficiently specialized. I review the empirical literature on these three requirements, discuss additional factors that may be important for diversity maintenance through pollination niche partitioning, and provide recommendations on how to detect this coexistence mechanism in natural plant communities.

2012 ◽  
Vol 468-471 ◽  
pp. 2764-2770
Author(s):  
Shan Lu ◽  
Bo Chen ◽  
Shao Qing Hu ◽  
Jing Jing Zhang ◽  
Jun Hao Jiang ◽  
...  

Urban close-to-nature plant community is a sustainable design and construction philosophy of landscape greenbelt planning. However, there is no explicit guide for constructing close-to-nature plant community Based on the analysis of community structure and characteristics of 10 typical natural plant communities in the West Lake Scenic Area in Hangzhou and summary of the features of natural community, as well as the analysis of plant landscape of Hangzhou Huagangguanyu Park to prove that the close-to-nature man-made plant community and natural plant community are interrelated in respect of vegetation composition and community structure, this paper puts forward to the essential construction methods of the close-to-nature landscape community, providing theoretical basis for research and construction of urban close-to-nature landscape plant community in China.


2013 ◽  
Vol 31 (2) ◽  
pp. 469-482 ◽  
Author(s):  
G. Concenço ◽  
M. Tomazi ◽  
I.V.T. Correia ◽  
S.A. Santos ◽  
L. Galon

In simple terms, a phytosociological survey is a group of ecological evaluation methods whose aim is to provide a comprehensive overview of both the composition and distribution of plant species in a given plant community. To understand the applicability of phytosociological surveys for weed science, as well as their validity, their ecological basis should be understood and the most suitable ones need to be chosen, because cultivated fields present a relatively distinct group of selecting factors when compared to natural plant communities. For weed science, the following sequence of steps is proposed as the most suitable: (1) overall infestation; (2) phytosociological tables/graphs; (3) intra-characterization by diversity; (4) inter-characterization and grouping by cluster analysis. A summary of methods is established in order to assist Weed Science researchers through their steps into the realm of phytosociology.


PLoS Biology ◽  
2005 ◽  
Vol 4 (1) ◽  
pp. e1 ◽  
Author(s):  
Colin Fontaine ◽  
Isabelle Dajoz ◽  
Jacques Meriguet ◽  
Michel Loreau

2011 ◽  
Vol 5 (4) ◽  
pp. 335-365 ◽  
Author(s):  
Siewe Nourridine ◽  
Miranda I. Teboh-Ewungkem ◽  
Gideon A. Ngwa

2021 ◽  
Author(s):  
◽  
Guyo Duba Gufu

<p>Biological invasion by non-native plant species has often been cited as a cause of native biodiversity loss. While the outcome of species invasions depends on interactions between exotic and resident native species, most studies of biological invasions have focused solely on the direct negative impacts of non-indigenous species on native biota. Although investigations of the role of competition in shaping natural plant communities were dominant in the previous generations and are still popular, more recent experimental research has uncovered the striking influence of facilitation on community dynamics. This thesis aims to investigate competitive and facilitative influence of the invasive South African iceplant (Carpobrotus edulis) on Spinifex sericeus, a native foredune grass species, with particular reference to implications of these interactions for dune restoration in New Zealand. It further explores the growth rates, substrate preferences and mating systems of the exotic and native iceplant taxa found in New Zealand. I begin by briefly outlining the influence of competition and facilitation on natural plant communities with reference to the role of facilitation in eco-restoration. I also give a few examples where exotic species have been found to facilitate native ones. Secondly, a neighbour removal experiment was conducted on coastal sand dunes with the main aim of studying the effects of Carpobrotus edulis on establishment of Spinifex sericeus at the foredune region. Finally, I compared the growth rates of the most widely distributed iceplant taxa in New Zealand in different substrates and the breeding systems of the exotic Carpobrotus.  Examples abound in literature of exotic plant species facilitating native ones especially in forestry. In the neighbour removal study, Carpobrotus edulis protected Spinifex seedlings against storm erosion, sandblasting and salt sprays while at the same time suppressing its leaf production. Suppression of Spinifex leaf production was more pronounced at top of the dune where stress elements is presumably more benign. There was no evidence of allelopathic suppression of Spinifex by C. edulis. Only Carpobrotus chilensis displayed some level of substrate preference by putting on relatively lower biomass in gravel. The exotic Carpobrotus spp. put on greater dry matter content than the native Disphyma australe and the Carpobrotus-x-Disphyma hybrid. The hybrid displayed a faster vegetative growth rate whereas D. australe allocated relatively more biomass to the roots than the shoot. Both Carpobrotus spp. are self compatible and highly capable of intrageneric and intergeneric hybridisation. Mass removal of the existing exotic iceplant stands from foredunes along high energy coasts is not advisable as they serve as useful stabilisers. The intergeneric hybrid is sexually sterile with sparsely spread stolons that could allow co-occurrence with other species and therefore is more suitable for foredune stabilisation. However, more research needs to be conducted on the ecology of the intergeneric hybrid.</p>


2021 ◽  
Author(s):  
Hannelore MacDonald ◽  
Dustin Brisson

Parasite-host interactions can result in periodic population dynamics when parasites over-exploit host populations. The timing of host seasonal activity, or host phenology, determines the frequency and demographic impact of parasite-host interactions which may govern if the parasite can sufficiently over-exploit their hosts to drive population cycles. We describe a mathematical model of a monocyclic, obligate-killer parasite system with seasonal host activity to investigate the consequences of host phenology on host-parasite dynamics. The results suggest that parasites can reach the densities necessary to destabilize host dynamics and drive cycling in only some phenological scenarios, such as environments with short seasons and synchronous host emergence. Further, only parasite lineages that are sufficiently adapted to phenological scenarios with short seasons and synchronous host emergence can achieve the densities necessary to over-exploit hosts and produce population cycles. Host-parasite cycles can also generate an eco-evolutionary feedback that slows parasite adaptation to the phenological environment as rare advantageous phenotypes are driven to extinction when introduced in phases of the cycle where host populations are small and parasite populations are large. The results demonstrate that seasonal environments can drive population cycling in a restricted set of phenological patterns and provides further evidence that the rate of adaptive evolution depends on underlying ecological dynamics.


Sign in / Sign up

Export Citation Format

Share Document