scholarly journals Unravelling anisogamy: egg size and ejaculate size mediate selection on morphology in free-swimming sperm

2016 ◽  
Vol 283 (1834) ◽  
pp. 20160671 ◽  
Author(s):  
Keyne Monro ◽  
Dustin J. Marshall

Gamete dimorphism (anisogamy) defines the sexes in most multicellular organisms. Theoretical explanations for its maintenance usually emphasize the size-related selection pressures of sperm competition and zygote survival, assuming that fertilization of all eggs precludes selection for phenotypes that enhance fertility. In external fertilizers, however, fertilization is often incomplete due to sperm limitation, and the risk of polyspermy weakens the advantage of high sperm numbers that is predicted to limit sperm size, allowing alternative selection pressures to target free-swimming sperm. We asked whether egg size and ejaculate size mediate selection on the free-swimming sperm of Galeolaria caespitosa , a marine tubeworm with external fertilization, by comparing relationships between sperm morphology and male fertility across manipulations of egg size and sperm density. Our results suggest that selection pressures exerted by these factors may aid the maintenance of anisogamy in external fertilizers by limiting the adaptive value of larger sperm in the absence of competition. In doing so, our study offers a more complete explanation for the stability of anisogamy across the range of sperm environments typical of this mating system and identifies new potential for the sexes to coevolve via mutual selection pressures exerted by gametes at fertilization.

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1793
Author(s):  
Justin Van Goor ◽  
Diane C. Shakes ◽  
Eric S. Haag

Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker. 


2012 ◽  
Vol 279 (1740) ◽  
pp. 3027-3034 ◽  
Author(s):  
Luke McNally ◽  
Sam P. Brown ◽  
Andrew L. Jackson

The high levels of intelligence seen in humans, other primates, certain cetaceans and birds remain a major puzzle for evolutionary biologists, anthropologists and psychologists. It has long been held that social interactions provide the selection pressures necessary for the evolution of advanced cognitive abilities (the ‘social intelligence hypothesis’), and in recent years decision-making in the context of cooperative social interactions has been conjectured to be of particular importance. Here we use an artificial neural network model to show that selection for efficient decision-making in cooperative dilemmas can give rise to selection pressures for greater cognitive abilities, and that intelligent strategies can themselves select for greater intelligence, leading to a Machiavellian arms race. Our results provide mechanistic support for the social intelligence hypothesis, highlight the potential importance of cooperative behaviour in the evolution of intelligence and may help us to explain the distribution of cooperation with intelligence across taxa.


2014 ◽  
Vol 12 (S1) ◽  
pp. S12-S16 ◽  
Author(s):  
Krishna Hari Dhakal ◽  
Myoung-Gun Choung ◽  
Young-Sun Hwang ◽  
Felix B. Fritschi ◽  
J. Grover Shannon ◽  
...  

Lutein has significant nutritional benefits for human health. Therefore, enhancing soybean lutein concentrations is an important breeding objective. However, selection for soybeans with high and environmentally stable lutein concentrations has been limited. The objectives of this study were to select soybeans with high seed lutein concentrations and to determine the stability of lutein concentrations across environments. A total of 314 genotypes were screened and 18 genotypes with high lutein concentrations and five genotypes with low lutein concentrations were selected for further examination. These 23 genotypes and two check varieties were evaluated under six environments (two planting dates for 2 years at one location and two planting dates for 1 year at another location). Lutein concentrations were influenced by genotype, environment and genotype × environment interactions. Genotypes with late maturity and low lutein concentrations were more stable than those with early maturity and high concentrations. Early (May) planting resulted in greater lutein concentrations than late (June) planting. Among the genotypes evaluated, PI603423B (7.7 μg/g) and PI89772 (5.8 μg/g) had the greatest mean lutein concentrations and exhibited medium and high stability across the six environments, respectively. Thus, these genotypes may be useful for breeding soybeans with high and stable seed lutein concentrations.


2019 ◽  
Vol 34 (5) ◽  
pp. 269-275
Author(s):  
Valery N. Razzhevaikin

Abstract The method of constructing a stability indicatrix of a nonnegative matrix having the form of a polynomial of its coefficients is presented. The algorithm of construction and conditions of its applicability are specified. The applicability of the algorithm is illustrated on examples of constructing the stability indicatrix for a series of functions widely used in simulation of the dynamics of discrete biological communities, for solving evolutionary optimality problems arising in biological problems of evolutionary selection, for identification of the conditions of the pandemic in a distributed host population.


Crustaceana ◽  
1997 ◽  
Vol 70 (8) ◽  
pp. 911-919 ◽  
Author(s):  
Kunihiko Izawa

AbstractThe copepodid stage of the parasitic copepod Peniculisa shiinoi Izawa, 1965 (Siphonostomatoida, Pennellidae), parasitic on the fins of a puffer fish, Canthigaster rivulatus, is described based on specimens reared from eggs. This is the only free-swimming larval stage of P. shiinoi. The copepodid is distinctly smaller than those of the known pennellids. However, the dispensability of the free-swimming nauplius stage is independent of the egg-size. The copepodid antennae of the pennellids are certainly uniramous. The setation of the rami of the copepodid legs varies among pennellids.


2015 ◽  
Vol 282 (1818) ◽  
pp. 20152169 ◽  
Author(s):  
Atsushi Yamauchi ◽  
Minus van Baalen ◽  
Yutaka Kobayashi ◽  
Junji Takabayashi ◽  
Kaori Shiojiri ◽  
...  

For a communication system to be stable, senders should convey honest information. Providing dishonest information, however, can be advantageous to senders, which imposes a constraint on the evolution of communication systems. Beyond single populations and bitrophic systems, one may ask whether stable communication systems can evolve in multitrophic systems. Consider cross-species signalling where herbivore-induced plant volatiles (HIPVs) attract predators to reduce the damage from arthropod herbivores. Such plant signals may be honest and help predators to identify profitable prey/plant types via HIPV composition and to assess prey density via the amount of HIPVs. There could be selection for dishonest signals that attract predators for protection from possible future herbivory. Recently, we described a case in which plants release a fixed, high amount of HIPVs independent of herbivore load, adopting what we labelled a ‘cry-wolf’ strategy. To understand when such signals evolve, we model coevolutionary interactions between plants, herbivores and predators, and show that both ‘honest’ and ‘cry-wolf’ types can emerge, depending on the assumed plant–herbivore encounter rates and herbivore population density. It is suggested that the ‘cry-wolf’ strategy may have evolved to reduce the risk of heavy damage in the future. Our model suggests that eco-evolutionary feedback loops involving a third species may have important consequences for the stability of this outcome.


2010 ◽  
Vol 278 (1708) ◽  
pp. 1054-1063 ◽  
Author(s):  
Emilie Macke ◽  
Sara Magalhães ◽  
Hong Do-Thi Khan ◽  
Anthony Luciano ◽  
Adrien Frantz ◽  
...  

Haplodiploid species display extraordinary sex ratios. However, a differential investment in male and female offspring might also be achieved by a differential provisioning of eggs, as observed in birds and lizards. We investigated this hypothesis in the haplodiploid spider mite Tetranychus urticae , which displays highly female-biased sex ratios. We show that egg size significantly determines not only larval size, juvenile survival and adult size, but also fertilization probability, as in marine invertebrates with external fertilization, so that female (fertilized) eggs are significantly larger than male (unfertilized) eggs. Moreover, females with on average larger eggs before fertilization produce a more female-biased sex ratio afterwards. Egg size thus mediates sex-specific egg provisioning, sex and offspring sex ratio. Finally, sex-specific egg provisioning has another major consequence: male eggs produced by mated mothers are smaller than male eggs produced by virgins, and this size difference persists in adults. Virgin females might thus have a (male) fitness advantage over mated females.


2013 ◽  
Vol 321-324 ◽  
pp. 2260-2264
Author(s):  
Dong Bin Xu ◽  
Shu Zhen Shi ◽  
Hao Zhang

A method for identifier-selection in expressway network is proposed based on toll collection accuracy of multi-path. Using basic information of the expressway network, the network model is built. Toll collection accuracy of the model is computed by the following steps: selection for competitive and valid paths, calculation for selection probability, toll calculation and calculation for toll collection accuracy. Through multi-period and multi-candidate strategy, the identifier-selection scheme is adopted to improve the stability and save the running time. The results verify the rationality and practicality of the method.


Sign in / Sign up

Export Citation Format

Share Document