scholarly journals Ignoring stratigraphic age uncertainty leads to erroneous estimates of species divergence times under the fossilized birth–death process

2019 ◽  
Vol 286 (1902) ◽  
pp. 20190685 ◽  
Author(s):  
Joëlle Barido-Sottani ◽  
Gabriel Aguirre-Fernández ◽  
Melanie J. Hopkins ◽  
Tanja Stadler ◽  
Rachel Warnock

Fossil information is essential for estimating species divergence times, and can be integrated into Bayesian phylogenetic inference using the fossilized birth–death (FBD) process. An important aspect of palaeontological data is the uncertainty surrounding specimen ages, which can be handled in different ways during inference. The most common approach is to fix fossil ages to a point estimate within the known age interval. Alternatively, age uncertainty can be incorporated by using priors, and fossil ages are then directly sampled as part of the inference. This study presents a comparison of alternative approaches for handling fossil age uncertainty in analysis using the FBD process. Based on simulations, we find that fixing fossil ages to the midpoint or a random point drawn from within the stratigraphic age range leads to biases in divergence time estimates, while sampling fossil ages leads to estimates that are similar to inferences that employ the correct ages of fossils. Second, we show a comparison using an empirical dataset of extant and fossil cetaceans, which confirms that different methods of handling fossil age uncertainty lead to large differences in estimated node ages. Stratigraphic age uncertainty should thus not be ignored in divergence time estimation and instead should be incorporated explicitly.

2018 ◽  
Author(s):  
Joëlle Barido-Sottani ◽  
Gabriel Aguirre-Fernández ◽  
Melanie Hopkins ◽  
Tanja Stadler ◽  
Rachel Warnock

AbstractFossil information is essential for estimating species divergence times, and can be integrated into Bayesian phylogenetic inference using the fossilized birth-death (FBD) process. An important aspect of palaeontological data is the uncertainty surrounding specimen ages, which can be handled in different ways during inference. The most common approach is to fix fossil ages to a point estimate within the known age interval. Alternatively, age uncertainty can be incorporated by using priors, and fossil ages are then directly sampled as part of the inference. This study presents a comparison of alternative approaches for handling fossil age uncertainty in analysis using the FBD process. Based on simulations, we find that fixing fossil ages to the midpoint or a random point drawn from within the stratigraphic age range leads to biases in divergence time estimates, while sampling fossil ages leads to estimates that are similar to inferences that employ the correct ages of fossils. Second, we show a comparison using an empirical dataset of extant and fossil cetaceans, which confirms that different methods of handling fossil age uncertainty lead to large differences in estimated node ages. Stratigraphic age uncertainty should thus not be ignored in divergence time estimation and instead should be incorporated explicitly.


2020 ◽  
Author(s):  
Tom Carruthers ◽  
Robert W Scotland

Abstract Understanding and representing uncertainty is crucial in academic research, because it enables studies to build on the conclusions of previous studies, leading to robust advances in a particular field. Here, we evaluate the nature of uncertainty and the manner by which it is represented in divergence time estimation, a field that is fundamental to many aspects of macroevolutionary research, and where there is evidence that uncertainty has been seriously underestimated. We address this issue in the context of methods used in divergence time estimation, and with respect to the manner by which time-calibrated phylogenies are interpreted. With respect to methods, we discuss how the assumptions underlying different methods may not adequately reflect uncertainty about molecular evolution, the fossil record, or diversification rates. Therefore, divergence time estimates may not adequately reflect uncertainty, and may be directly contradicted by subsequent findings. For the interpretation of time-calibrated phylogenies, we discuss how the use of time-calibrated phylogenies for reconstructing general evolutionary timescales leads to inferences about macroevolution that are highly sensitive to methodological limitations in how uncertainty is accounted for. By contrast, we discuss how the use of time-calibrated phylogenies to test specific hypotheses leads to inferences about macroevolution that are less sensitive to methodological limitations. Given that many biologists wish to use time-calibrated phylogenies to reconstruct general evolutionary timescales, we conclude that the development of methods of divergence time estimation that adequately account for uncertainty is necessary.


2017 ◽  
Author(s):  
Mario dos Reis ◽  
Gregg F. Gunnell ◽  
José Barba-Montoya ◽  
Alex Wilkins ◽  
Ziheng Yang ◽  
...  

AbstractPrimates have long been a test case for the development of phylogenetic methods for divergence time estimation. Despite a large number of studies, however, the timing of origination of crown Primates relative to the K-Pg boundary and the timing of diversification of the main crown groups remain controversial. Here we analysed a dataset of 372 taxa (367 Primates and 5 outgroups, 61 thousand base pairs) that includes nine complete primate genomes (3.4 million base pairs). We systematically explore the effect of different interpretations of fossil calibrations and molecular clock models on primate divergence time estimates. We find that even small differences in the construction of fossil calibrations can have a noticeable impact on estimated divergence times, especially for the oldest nodes in the tree. Notably, choice of molecular rate model (auto-correlated or independently distributed rates) has an especially strong effect on estimated times, with the independent rates model producing considerably more ancient estimates for the deeper nodes in the phylogeny. We implement thermodynamic integration, combined with Gaussian quadrature, in the program MCMCTree, and use it to calculate Bayes factors for clock models. Bayesian model selection indicates that the auto-correlated rates model fits the primate data substantially better, and we conclude that time estimates under this model should be preferred. We show that for eight core nodes in the phylogeny, uncertainty in time estimates is close to the theoretical limit imposed by fossil uncertainties. Thus, these estimates are unlikely to be improved by collecting additional molecular sequence data. All analyses place the origin of Primates close to the K-Pg boundary, either in the Cretaceous or straddling the boundary into the Palaeogene.


2019 ◽  
Vol 69 (4) ◽  
pp. 660-670 ◽  
Author(s):  
Tom Carruthers ◽  
Michael J Sanderson ◽  
Robert W Scotland

Abstract Rate variation adds considerable complexity to divergence time estimation in molecular phylogenies. Here, we evaluate the impact of lineage-specific rates—which we define as among-branch-rate-variation that acts consistently across the entire genome. We compare its impact to residual rates—defined as among-branch-rate-variation that shows a different pattern of rate variation at each sampled locus, and gene-specific rates—defined as variation in the average rate across all branches at each sampled locus. We show that lineage-specific rates lead to erroneous divergence time estimates, regardless of how many loci are sampled. Further, we show that stronger lineage-specific rates lead to increasing error. This contrasts to residual rates and gene-specific rates, where sampling more loci significantly reduces error. If divergence times are inferred in a Bayesian framework, we highlight that error caused by lineage-specific rates significantly reduces the probability that the 95% highest posterior density includes the correct value, and leads to sensitivity to the prior. Use of a more complex rate prior—which has recently been proposed to model rate variation more accurately—does not affect these conclusions. Finally, we show that the scale of lineage-specific rates used in our simulation experiments is comparable to that of an empirical data set for the angiosperm genus Ipomoea. Taken together, our findings demonstrate that lineage-specific rates cause error in divergence time estimates, and that this error is not overcome by analyzing genomic scale multilocus data sets. [Divergence time estimation; error; rate variation.]


2020 ◽  
Vol 37 (5) ◽  
pp. 1508-1529
Author(s):  
Tom Carruthers ◽  
Robert W Scotland

Abstract Relaxed clock methods account for among-branch-rate-variation when estimating divergence times by inferring different rates for individual branches. In order to infer different rates for individual branches, important assumptions are required. This is because molecular sequence data do not provide direct information about rates but instead provide direct information about the total number of substitutions along any branch, which is a product of the rate and time for that branch. Often, the assumptions required for estimating rates for individual branches depend heavily on the implementation of multiple fossil calibrations in a single phylogeny. Here, we show that the basis of these assumptions is often critically undermined. First, we highlight that the temporal distribution of the fossil record often violates key assumptions of methods that use multiple fossil calibrations with relaxed clocks. With respect to “node calibration” methods, this conclusion is based on our inference that different fossil calibrations are unlikely to reflect the relative ages of different clades. With respect to the fossilized birth–death process, this conclusion is based on our inference that the fossil recovery rate is often highly heterogeneous. We then demonstrate that methods of divergence time estimation that use multiple fossil calibrations are highly sensitive to assumptions about the fossil record and among-branch-rate-variation. Given the problems associated with these assumptions, our results highlight that using multiple fossil calibrations with relaxed clocks often does little to improve the accuracy of divergence time estimates.


2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i884-i894
Author(s):  
Jose Barba-Montoya ◽  
Qiqing Tao ◽  
Sudhir Kumar

Abstract Motivation As the number and diversity of species and genes grow in contemporary datasets, two common assumptions made in all molecular dating methods, namely the time-reversibility and stationarity of the substitution process, become untenable. No software tools for molecular dating allow researchers to relax these two assumptions in their data analyses. Frequently the same General Time Reversible (GTR) model across lineages along with a gamma (+Γ) distributed rates across sites is used in relaxed clock analyses, which assumes time-reversibility and stationarity of the substitution process. Many reports have quantified the impact of violations of these underlying assumptions on molecular phylogeny, but none have systematically analyzed their impact on divergence time estimates. Results We quantified the bias on time estimates that resulted from using the GTR + Γ model for the analysis of computer-simulated nucleotide sequence alignments that were evolved with non-stationary (NS) and non-reversible (NR) substitution models. We tested Bayesian and RelTime approaches that do not require a molecular clock for estimating divergence times. Divergence times obtained using a GTR + Γ model differed only slightly (∼3% on average) from the expected times for NR datasets, but the difference was larger for NS datasets (∼10% on average). The use of only a few calibrations reduced these biases considerably (∼5%). Confidence and credibility intervals from GTR + Γ analysis usually contained correct times. Therefore, the bias introduced by the use of the GTR + Γ model to analyze datasets, in which the time-reversibility and stationarity assumptions are violated, is likely not large and can be reduced by applying multiple calibrations. Availability and implementation All datasets are deposited in Figshare: https://doi.org/10.6084/m9.figshare.12594638.


2016 ◽  
Vol 12 (11) ◽  
pp. 20160609 ◽  
Author(s):  
G. T. Lloyd ◽  
D. W. Bapst ◽  
M. Friedman ◽  
K. E. Davis

Branch lengths—measured in character changes—are an essential requirement of clock-based divergence estimation, regardless of whether the fossil calibrations used represent nodes or tips. However, a separate set of divergence time approaches are typically used to date palaeontological trees, which may lack such branch lengths. Among these methods, sophisticated probabilistic approaches have recently emerged, in contrast with simpler algorithms relying on minimum node ages. Here, using a novel phylogenetic hypothesis for Mesozoic dinosaurs, we apply two such approaches to estimate divergence times for: (i) Dinosauria, (ii) Avialae (the earliest birds) and (iii) Neornithes (crown birds). We find: (i) the plausibility of a Permian origin for dinosaurs to be dependent on whether Nyasasaurus is the oldest dinosaur, (ii) a Middle to Late Jurassic origin of avian flight regardless of whether Archaeopteryx or Aurornis is considered the first bird and (iii) a Late Cretaceous origin for Neornithes that is broadly congruent with other node- and tip-dating estimates. Demonstrating the feasibility of probabilistic time-scaling further opens up divergence estimation to the rich histories of extinct biodiversity in the fossil record, even in the absence of detailed character data.


2019 ◽  
Vol 99 (1) ◽  
pp. 105-367 ◽  
Author(s):  
Mao-Qiang He ◽  
Rui-Lin Zhao ◽  
Kevin D. Hyde ◽  
Dominik Begerow ◽  
Martin Kemler ◽  
...  

AbstractThe Basidiomycota constitutes a major phylum of the kingdom Fungi and is second in species numbers to the Ascomycota. The present work provides an overview of all validly published, currently used basidiomycete genera to date in a single document. An outline of all genera of Basidiomycota is provided, which includes 1928 currently used genera names, with 1263 synonyms, which are distributed in 241 families, 68 orders, 18 classes and four subphyla. We provide brief notes for each accepted genus including information on classification, number of accepted species, type species, life mode, habitat, distribution, and sequence information. Furthermore, three phylogenetic analyses with combined LSU, SSU, 5.8s, rpb1, rpb2, and ef1 datasets for the subphyla Agaricomycotina, Pucciniomycotina and Ustilaginomycotina are conducted, respectively. Divergence time estimates are provided to the family level with 632 species from 62 orders, 168 families and 605 genera. Our study indicates that the divergence times of the subphyla in Basidiomycota are 406–430 Mya, classes are 211–383 Mya, and orders are 99–323 Mya, which are largely consistent with previous studies. In this study, all phylogenetically supported families were dated, with the families of Agaricomycotina diverging from 27–178 Mya, Pucciniomycotina from 85–222 Mya, and Ustilaginomycotina from 79–177 Mya. Divergence times as additional criterion in ranking provide additional evidence to resolve taxonomic problems in the Basidiomycota taxonomic system, and also provide a better understanding of their phylogeny and evolution.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yan Du ◽  
Shaoyuan Wu ◽  
Scott V. Edwards ◽  
Liang Liu

Abstract Background The flood of genomic data to help build and date the tree of life requires automation at several critical junctures, most importantly during sequence assembly and alignment. It is widely appreciated that automated alignment protocols can yield inaccuracies, but the relative impact of various sources error on phylogenomic analysis is not yet known. This study employs an updated mammal data set of 5162 coding loci sampled from 90 species to evaluate the effects of alignment uncertainty, substitution models, and fossil priors on gene tree, species tree, and divergence time estimation. Additionally, a novel coalescent likelihood ratio test is introduced for comparing competing species trees against a given set of gene trees. Results The aligned DNA sequences of 5162 loci from 90 species were trimmed and filtered using trimAL and two filtering protocols. The final dataset contains 4 sets of alignments - before trimming, after trimming, filtered by a recently proposed pipeline, and further filtered by comparing ML gene trees for each locus with the concatenation tree. Our analyses suggest that the average discordance among the coalescent trees is significantly smaller than that among the concatenation trees estimated from the 4 sets of alignments or with different substitution models. There is no significant difference among the divergence times estimated with different substitution models. However, the divergence dates estimated from the alignments after trimming are more recent than those estimated from the alignments before trimming. Conclusions Our results highlight that alignment uncertainty of the updated mammal data set and the choice of substitution models have little impact on tree topologies yielded by coalescent methods for species tree estimation, whereas they are more influential on the trees made by concatenation. Given the choice of calibration scheme and clock models, divergence time estimates are robust to the choice of substitution models, but removing alignments deemed problematic by trimming algorithms can lead to more recent dates. Although the fossil prior is important in divergence time estimation, Bayesian estimates of divergence times in this data set are driven primarily by the sequence data.


Sign in / Sign up

Export Citation Format

Share Document