scholarly journals Radiation of tropical island bees and the role of phylogenetic niche conservatism as an important driver of biodiversity

2020 ◽  
Vol 287 (1925) ◽  
pp. 20200045
Author(s):  
James B. Dorey ◽  
Scott V. C. Groom ◽  
Elisha H. Freedman ◽  
Cale S. Matthews ◽  
Olivia K. Davies ◽  
...  

Island biogeography explores how biodiversity in island ecosystems arises and is maintained. The topographical complexity of islands can drive speciation by providing a diversity of niches that promote adaptive radiation and speciation. However, recent studies have argued that phylogenetic niche conservatism, combined with topographical complexity and climate change, could also promote speciation if populations are episodically fragmented into climate refugia that enable allopatric speciation. Adaptive radiation and phylogenetic niche conservatism therefore both predict that topographical complexity should encourage speciation, but they differ strongly in their inferred mechanisms. Using genetic (mitochondrial DNA (mtDNA) and single-nucleotide polymorphism (SNP)) and morphological data, we show high species diversity (22 species) in an endemic clade of Fijian Homalictus bees, with most species restricted to highlands and frequently exhibiting narrow geographical ranges. Our results indicate that elevational niches have been conserved across most speciation events, contradicting expectations from an adaptive radiation model but concordant with phylogenetic niche conservatism. Climate cycles, topographical complexity, and niche conservatism could interact to shape island biodiversity. We argue that phylogenetic niche conservatism is an important driver of tropical island bee biodiversity but that this phylogenetic inertia also leads to major extinction risks for tropical ectotherms under future warming climates.

2019 ◽  
Vol 127 (2) ◽  
pp. 479-492 ◽  
Author(s):  
Anna E Hiller ◽  
Michelle S Koo ◽  
Kari R Goodman ◽  
Kerry L Shaw ◽  
Patrick M O’Grady ◽  
...  

Abstract The role of the environmental niche in fostering ecological divergence during adaptive radiation remains enigmatic. In this study, we examine the interplay between environmental niche divergence and conservatism in the context of adaptive radiation on oceanic islands, by characterizing the niche breadth of four Hawaiian arthropod radiations: Tetragnatha spiders (Tetragnathidae Latreille, 1804), Laupala crickets (Gryllidae Otte, 1994), a clade of Drosophila flies (Drosophilidae Fallén, 1823) and Nesosydne planthoppers (Delphacidae Kirkaldy, 1907). We assembled occurrence datasets for the four lineages, modelled their distributions and quantified niche overlap. All four groups occupy the islands in distinct ways, highlighting the contrasting axes of diversification for different lineages. Laupala and Nesosydne have opposite environmental niche extents (broad and narrow, respectively), whereas Tetragnatha and Drosophila share relatively intermediate tolerances. Temperature constrains the distributions of all four radiations. Tests of phylogenetic signal suggest that, for Tetragnatha and Drosophila, closely related species exhibit similar environmental niches; thus, diversification is associated with niche conservatism. Sister species comparisons also show that populations often retain similar environmental tolerances, although exceptions do occur. Results imply that diversification does not occur through ecological speciation; instead, adaptive radiation occurs largely within a single environment.


2020 ◽  
Vol 27 (4) ◽  
pp. 713-721 ◽  
Author(s):  
Darlan da Silva ◽  
Anderson Eduardo Aires ◽  
Juan Pablo Zurano ◽  
Miguel Angel Olalla-Tárraga ◽  
Pablo Ariel Martinez

2020 ◽  
Vol 131 (2) ◽  
pp. 417-433
Author(s):  
María Celeste Scattolini ◽  
Andrés Lira-Noriega ◽  
Viviana Andrea Confalonieri ◽  
Silvia Pietrokovsky ◽  
María Marta Cigliano

Abstract A biogeographical study of the genus group Scotussae, a clade of grasshoppers endemic to the subtropical temperate region of the La Plata Basin, South America, was performed within a phylogenetic context to test whether wing reduction reflects evolutionary and ecological processes within the clade. We used an integrative biogeographical approach to determine the role of geohistorical events, geography, ecology and phylogenetic niche conservatism on the distribution and diversification processes of the group. We performed a total evidence phylogenetic analysis and tested the phylogenetic signal of ecological niche traits (niche optimum and niche breadth). We also assessed the degree to which phylogenetic distance is correlated with geographical and ecological niche traits and we used BioGeoBEARS to estimate ancestral ranges. The results provided evidence for phylogenetic niche conservatism as well as a significant association between phylogeny and both geographical and, more strongly, ecological traits. Two main clades were clearly associated with wing development, and evidence points to the evolutionary and ecological processes within these two groups being different. The Brachypterous clade shows evidence that allopatric speciation was the main source of diversification, while for the Macropterous clade sympatric speciation seems more likely.


Author(s):  
Lyudmila P. Kuzmina ◽  
Anastasiya G. Khotuleva ◽  
Evgeniy V. Kovalevsky ◽  
Nikolay N. Anokhin ◽  
Iraklij M. Tskhomariya

Introduction. Various industries widely use chrysotile asbestos, which determines the relevance of research aimed at the prevention of asbestos-related diseases. It is promising to assess the role of specific genes, which products are potentially involved in the development and regulation of certain links in the pathogenesis of asbestosis, forming a genetic predisposition to the disease. The study aims to analyze the presence of associations of genetic polymorphism of cytokines and antioxidant enzymes with asbestosis development. Materials and methods. Groups were formed for examination among employees of OJSC "Uralasbest" with an established diagnosis of asbestosis and without lung diseases. For each person included in the study, dust exposure doses were calculated considering the percentage of time spent at the workplace during the shift for the entire work time. Genotyping of single nucleotide polymorphisms of cytokines IL1b (rs16944), IL4 (rs2243250), IL6 (rs1800795), TNFα (rs1800629) and antioxidant enzymes SOD2 (rs4880), GSTP1 (rs1610011), CAT (rs1001179) was carried out. Results. The authors revealed the associations of polymorphic variants A511G IL1b gene (OR=2.457, 95% CI=1.232-4.899) and C47T SOD2 gene (OR=1.705, 95% CI=1.055-2.756) with the development of asbestosis. There was an increase in the T allele IL4 gene (C589T) frequency in persons with asbestosis at lower values of dust exposure doses (OR=2.185, 95% CI=1.057-4.514). The study showed the associations of polymorphism C589T IL4 gene and C174G IL6 gene with more severe asbestosis, polymorphism A313G GSTP1 gene with pleural lesions in asbestosis. Conclusion. Polymorphic variants of the genes of cytokines and antioxidant enzymes, the protein products directly involved in the pathogenetic mechanisms of the formation of asbestosis, contribute to forming a genetic predisposition to the development and severe course of asbestosis. Using the identified genetic markers to identify risk groups for the development and intense period of asbestos-related pathology will optimize treatment and preventive measures, considering the organism's characteristics.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ianthe A. E. M. van Belzen ◽  
Alexander Schönhuth ◽  
Patrick Kemmeren ◽  
Jayne Y. Hehir-Kwa

AbstractCancer is generally characterized by acquired genomic aberrations in a broad spectrum of types and sizes, ranging from single nucleotide variants to structural variants (SVs). At least 30% of cancers have a known pathogenic SV used in diagnosis or treatment stratification. However, research into the role of SVs in cancer has been limited due to difficulties in detection. Biological and computational challenges confound SV detection in cancer samples, including intratumor heterogeneity, polyploidy, and distinguishing tumor-specific SVs from germline and somatic variants present in healthy cells. Classification of tumor-specific SVs is challenging due to inconsistencies in detected breakpoints, derived variant types and biological complexity of some rearrangements. Full-spectrum SV detection with high recall and precision requires integration of multiple algorithms and sequencing technologies to rescue variants that are difficult to resolve through individual methods. Here, we explore current strategies for integrating SV callsets and to enable the use of tumor-specific SVs in precision oncology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Calvano Küchler ◽  
Agnes Schröder ◽  
Vinicius Broska Teodoro ◽  
Ute Nazet ◽  
Rafaela Scariot ◽  
...  

Abstract Background This study aimed to investigate, if different physiological concentrations of vitamin D (25(OH)D3) and single nucleotide polymorphisms in vitamin D receptor (VDR) gene have an impact on gene expression in human periodontal ligament (hPDL) fibroblasts induced by simulated orthodontic compressive strain. Methods A pool of hPDL fibroblasts was treated in absence or presence of 25(OH)D3 in 3 different concentrations (10, 40 and 60 ng/ml). In order to evaluate the role of single nucleotide polymorphisms in the VDR gene, hPDL fibroblasts from 9 patients were used and treated in absence or presence of 40 ng/ml 25(OH)D3. Each experiment was performed with and without simulated orthodontic compressive strain. Real-time PCR was used for gene expression and allelic discrimination analysis. Relative expression of dehydrocholesterol reductase (DHCR7), Sec23 homolog A, amidohydrolase domain containing 1 (AMDHD1), vitamin D 25-hydroxylase (CYP2R1), Hydroxyvitamin D-1-α hydroxylase, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2) and interleukin-6 (IL6) was assessed. Three single nucleotide polymorphisms in VDR were genotyped. Parametric or non-parametric tests were used with an alpha of 5%. Results RANKL, RANKL:OPG ratio, COX-2, IL-6, DHCR7, CYP2R1 and AMDHD1 were differentially expressed during simulated orthodontic compressive strain (p < 0.05). The RANKL:OPG ratio was downregulated by all concentrations (10 ng/ml, 40 ng/ml and 60 ng/ml) of 25(OH)D3 (mean = 0.96 ± 0.68, mean = 1.61 ± 0.66 and mean = 1.86 ± 0.78, respectively) in comparison to the control (mean 2.58 ± 1.16) (p < 0.05). CYP2R1 gene expression was statistically modulated by the different 25(OH)D3 concentrations applied (p = 0.008). Samples from individuals carrying the GG genotype in rs739837 presented lower VDR mRNA expression and samples from individuals carrying the CC genotype in rs7975232 presented higher VDR mRNA expression (p < 0.05). Conclusions Simulated orthodontic compressive strain and physiological concentrations of 25(OH)D3 seem to regulate the expression of orthodontic tooth movement and vitamin-D-related genes in periodontal ligament fibroblasts in the context of orthodontic compressive strain. Our study also suggests that single nucleotide polymorphisms in the VDR gene regulate VDR expression in periodontal ligament fibroblasts in the context of orthodontic compressive strain.


Sign in / Sign up

Export Citation Format

Share Document