scholarly journals Gene expression correlates of social evolution in coral reef butterflyfishes

2020 ◽  
Vol 287 (1929) ◽  
pp. 20200239 ◽  
Author(s):  
Jessica P. Nowicki ◽  
Morgan S. Pratchett ◽  
Stefan P. W. Walker ◽  
Darren J. Coker ◽  
Lauren A. O'Connell

Animals display remarkable variation in social behaviour. However, outside of rodents, little is known about the neural mechanisms of social variation, and whether they are shared across species and sexes, limiting our understanding of how sociality evolves. Using coral reef butterflyfishes, we examined gene expression correlates of social variation (i.e. pair bonding versus solitary living) within and between species and sexes. In several brain regions, we quantified gene expression of receptors important for social variation in mammals: oxytocin ( OTR ), arginine vasopressin ( V1aR ), dopamine ( D1R, D2R ) and mu-opioid ( MOR ). We found that social variation across individuals of the oval butterflyfish, Chaetodon lunulatus, is linked to differences in OTR , V1aR, D1R, D2R and MOR gene expression within several forebrain regions in a sexually dimorphic manner. However, this contrasted with social variation among six species representing a single evolutionary transition from pair-bonded to solitary living. Here, OTR expression within the supracommissural part of the ventral telencephalon was higher in pair-bonded than solitary species, specifically in males. These results contribute to the emerging idea that nonapeptide, dopamine and opioid signalling is a central theme to the evolution of sociality across individuals, although the precise mechanism may be flexible across sexes and species.

2017 ◽  
Author(s):  
Jessica P. Nowicki ◽  
Morgan S. Pratchett ◽  
Stefan P. W. Walker ◽  
Darren J. Coker ◽  
Lauren A. O’Connell

AbstractAnimals display remarkable variation in social behavior. However, outside of rodents, little is known about the neural mechanisms of social variation, and whether they are shared across species and sexes, limiting our understanding of how sociality evolves. Using coral reef butterflyfishes, we examined gene expression correlates of social variation (i.e., pair bonding vs. solitary living) within and between species and sexes. In several brain regions, we quantified gene expression of receptors important for social variation in mammals: oxytocin (OTR), arginine vasopressin (V1aR), dopamine (D1R, D2R), and mu-opioid (MOR). We found that social variation across individuals of the oval butterflyfish, Chaetodon lunulatus, is linked to differences in OTR,V1aR, D1R, D2R, and MOR gene expression within several forebrain regions in a sexually dimorphic manner. However, this contrasted with social variation among six species representing a single evolutionary transition from pair bonded to solitary living. Here, OTR expression within the supracommissural part of the ventral telencephalon was higher in pair bonded than solitary species, specifically in males. These results contribute to the emerging idea that nonapeptide, dopamine, and opioid signaling is a central theme to the evolution of sociality across individuals, although the precise mechanism may be flexible across sexes and species.


2020 ◽  
Author(s):  
Alex R. DeCasien ◽  
Chet C. Sherwood ◽  
James P. Higham

AbstractSexually dimorphic traits (i.e. phenotypic differences between males and females) are largely produced by sex-biased gene expression (i.e. differential expression of genes present in both sexes). These expression differences may be the result of sexual selection, although other factors (e.g., relaxed purifying selection, pleiotropy, dosage compensation) also contribute. Given that humans and other primates exhibit sex differences in cognition and neuroanatomy, this implicates sex differences in brain gene expression. Here, we compare sex-biased gene expression in humans and rhesus macaques across 16 brain regions using published RNA-Seq datasets. Our results demonstrate that most sex-biased genes are differentially expressed between species, and that overlap across species is limited. Human brains are relatively more sexually dimorphic and exhibit more male-than female-biased genes. Across species, gene expression is biased in opposite directions in some regions and in the same direction in others, suggesting that the latter may be more relevant in nonhuman primate models of neurological disorders. Finally, the brains of both species exhibit positive correlations between sex effects across regions, higher tissue specificity among sex-biased genes, enrichment of extracellular matrix among male-biased genes, and regulation of sex-biased genes by sex hormones. Taken together, our results demonstrate some conserved mechanisms underlying sex-biased brain gene expression, while also suggesting that increased neurodevelopmental plasticity and/or strong sexual selection on cognitive abilities may have played a role in shaping sex-biased brain gene expression in the human lineage.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiao Li ◽  
Jakob Seidlitz ◽  
John Suckling ◽  
Feiyang Fan ◽  
Gong-Jun Ji ◽  
...  

AbstractMajor depressive disorder (MDD) has been shown to be associated with structural abnormalities in a variety of spatially diverse brain regions. However, the correlation between brain structural changes in MDD and gene expression is unclear. Here, we examine the link between brain-wide gene expression and morphometric changes in individuals with MDD, using neuroimaging data from two independent cohorts and a publicly available transcriptomic dataset. Morphometric similarity network (MSN) analysis shows replicable cortical structural differences in individuals with MDD compared to control subjects. Using human brain gene expression data, we observe that the expression of MDD-associated genes spatially correlates with MSN differences. Analysis of cell type-specific signature genes suggests that microglia and neuronal specific transcriptional changes account for most of the observed correlation with MDD-specific MSN differences. Collectively, our findings link molecular and structural changes relevant for MDD.


Sign in / Sign up

Export Citation Format

Share Document