scholarly journals Wing serial homologues and the diversification of insect outgrowths: insights from the pupae of scarab beetles

2021 ◽  
Vol 288 (1943) ◽  
pp. 20202828
Author(s):  
Yonggang Hu ◽  
Armin P. Moczek

Modification of serially homologous structures is a common avenue towards functional innovation in developmental evolution, yet ancestral affinities among serial homologues may be obscured as structure-specific modifications accumulate over time. We sought to assess the degree of homology to wings of three types of body wall projections commonly observed in scarab beetles: (i) the dorsomedial support structures found on the second and third thoracic segments of pupae, (ii) the abdominal support structures found bilaterally in most abdominal segments of pupae, and (iii) the prothoracic horns which depending on species and sex may be restricted to pupae or also found in adults. We functionally investigated 14 genes within, as well as two genes outside, the canonical wing gene regulatory network to compare and contrast their role in the formation of each of the three presumed wing serial homologues. We found 11 of 14 wing genes to be functionally required for the proper formation of lateral and dorsal support structures, respectively, and nine for the formation of prothoracic horns. At the same time, we document multiple instances of divergence in gene function across our focal structures. Collectively, our results support the hypothesis that dorsal and lateral support structures as well as prothoracic horns share a developmental origin with insect wings. Our findings suggest that the morphological and underlying gene regulatory diversification of wing serial homologues across species, life stages and segments has contributed significantly to the extraordinary diversity of arthropod appendages and outgrowths.

2017 ◽  
Author(s):  
Courtney M. Clark-Hachtel ◽  
Yoshinori Tomoyasu

The origin of insect wings is a biological mystery that has fascinated scientists for centuries. Through extensive investigations performed across various fields, two possible wing origin tissues have been identified; a lateral outgrowth of the dorsal body wall (tergum) and ancestral proximal leg structures1,2. With each idea offering both strengths and weaknesses, these two schools of thought have been in an intellectual battle for decades without reaching a consensus3. Identification of tissues homologous to insect wings from linages outside of Insecta will provide pivotal information to resolve this conundrum. Here, through expression analyses and CRISPR/Cas9-based genome-editing in the crustacean, Parhyale hawaiensis, we show that a wing-like gene regulatory network (GRN) operates both in the crustacean terga and in the proximal leg segments, suggesting that (i) the evolution of a wing-like GRN precedes the emergence of insect wings, and (ii) that both of these tissues are equally likely to be crustacean wing homologs. Interestingly, the presence of two sets of wing homologs parallels previous findings in some wingless segments of insects, where wing serial homologs are maintained as two separate tissues4–7. This similarity provides crucial support for the idea that the wingless segments of insects indeed reflect an ancestral state for the tissues that gave rise to the insect wing, while the true insect wing represents a derived state that depends upon the contribution of two distinct tissues. These outcomes point toward a dual origin of insect wings, and thus provide a crucial opportunity to unify the two historically competing hypotheses on the origin of this evolutionarily monumental structure.


Author(s):  
Xingzhe Yang ◽  
Feng Li ◽  
Jie Ma ◽  
Yan Liu ◽  
Xuejiao Wang ◽  
...  

AbstractIn recent years, the incidence of fatigue has been increasing, and the effective prevention and treatment of fatigue has become an urgent problem. As a result, the genetic research of fatigue has become a hot spot. Transcriptome-level regulation is the key link in the gene regulatory network. The transcriptome includes messenger RNAs (mRNAs) and noncoding RNAs (ncRNAs). MRNAs are common research targets in gene expression profiling. Noncoding RNAs, including miRNAs, lncRNAs, circRNAs and so on, have been developed rapidly. Studies have shown that miRNAs are closely related to the occurrence and development of fatigue. MiRNAs can regulate the immune inflammatory reaction in the central nervous system (CNS), regulate the transmission of nerve impulses and gene expression, regulate brain development and brain function, and participate in the occurrence and development of fatigue by regulating mitochondrial function and energy metabolism. LncRNAs can regulate dopaminergic neurons to participate in the occurrence and development of fatigue. This has certain value in the diagnosis of chronic fatigue syndrome (CFS). CircRNAs can participate in the occurrence and development of fatigue by regulating the NF-κB pathway, TNF-α and IL-1β. The ceRNA hypothesis posits that in addition to the function of miRNAs in unidirectional regulation, mRNAs, lncRNAs and circRNAs can regulate gene expression by competitive binding with miRNAs, forming a ceRNA regulatory network with miRNAs. Therefore, we suggest that the miRNA-centered ceRNA regulatory network is closely related to fatigue. At present, there are few studies on fatigue-related ncRNA genes, and most of these limited studies are on miRNAs in ncRNAs. However, there are a few studies on the relationship between lncRNAs, cirRNAs and fatigue. Less research is available on the pathogenesis of fatigue based on the ceRNA regulatory network. Therefore, exploring the complex mechanism of fatigue based on the ceRNA regulatory network is of great significance. In this review, we summarize the relationship between miRNAs, lncRNAs and circRNAs in ncRNAs and fatigue, and focus on exploring the regulatory role of the miRNA-centered ceRNA regulatory network in the occurrence and development of fatigue, in order to gain a comprehensive, in-depth and new understanding of the essence of the fatigue gene regulatory network.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 827
Author(s):  
Andrea Gómez-Felipe ◽  
Daniel Kierzkowski ◽  
Stefan de Folter

Gynoecium development is dependent on gene regulation and hormonal pathway interactions. The phytohormones auxin and cytokinin are involved in many developmental programs, where cytokinin is normally important for cell division and meristem activity, while auxin induces cell differentiation and organ initiation in the shoot. The MADS-box transcription factor AGAMOUS (AG) is important for the development of the reproductive structures of the flower. Here, we focus on the relationship between AG and cytokinin in Arabidopsis thaliana, and use the weak ag-12 and the strong ag-1 allele. We found that cytokinin induces carpeloid features in an AG-dependent manner and the expression of the transcription factors CRC, SHP2, and SPT that are involved in carpel development. AG is important for gynoecium development, and contributes to regulating, or else directly regulates CRC, SHP2, and SPT. All four genes respond to either reduced or induced cytokinin signaling and have the potential to be regulated by cytokinin via the type-B ARR proteins. We generated a model of a gene regulatory network, where cytokinin signaling is mainly upstream and in parallel with AG activity.


Sign in / Sign up

Export Citation Format

Share Document