scholarly journals Information overload for (bounded) rational agents

2021 ◽  
Vol 288 (1944) ◽  
pp. 20202957
Author(s):  
Emmanuel M. Pothos ◽  
Stephan Lewandowsky ◽  
Irina Basieva ◽  
Albert Barque-Duran ◽  
Katy Tapper ◽  
...  

Bayesian inference offers an optimal means of processing environmental information and so an advantage in natural selection. We consider the apparent, recent trend in increasing dysfunctional disagreement in, for example, political debate. This is puzzling because Bayesian inference benefits from powerful convergence theorems, precluding dysfunctional disagreement. Information overload is a plausible factor limiting the applicability of full Bayesian inference, but what is the link with dysfunctional disagreement? Individuals striving to be Bayesian-rational, but challenged by information overload, might simplify by using Bayesian networks or the separation of questions into knowledge partitions, the latter formalized with quantum probability theory. We demonstrate the massive simplification afforded by either approach, but also show how they contribute to dysfunctional disagreement.

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1079 ◽  
Author(s):  
Jie Wei ◽  
Yufeng Nie ◽  
Wenxian Xie

Pearl’s conditioning method is one of the basic algorithms of Bayesian inference, and the loop cutset is crucial for the implementation of conditioning. There are many numerical algorithms for solving the loop cutset, but theoretical research on the characteristics of the loop cutset is lacking. In this paper, theoretical insights into the size and node probability of the loop cutset are obtained based on graph theory and probability theory. It is proven that when the loop cutset in a p-complete graph has a size of p − 2 , the upper bound of the size can be determined by the number of nodes. Furthermore, the probability that a node belongs to the loop cutset is proven to be positively correlated with its degree. Numerical simulations show that the application of the theoretical results can facilitate the prediction and verification of the loop cutset problem. This work is helpful in evaluating the performance of Bayesian networks.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 170 ◽  
Author(s):  
Andreas Wichert ◽  
Catarina Moreira ◽  
Peter Bruza

Empirical findings from cognitive psychology indicate that, in scenarios under high levels of uncertainty, many people tend to make irrational decisions. To address this problem, models based on quantum probability theory, such as the quantum-like Bayesian networks, have been proposed. However, this model makes use of a Bayes normalisation factor during probabilistic inference to convert the likelihoods that result from quantum interference effects into probability values. The interpretation of this operation is not clear and leads to extremely skewed intensity waves that make the task of prediction of these irrational decisions challenging. This article proposes the law of balance, a novel mathematical formalism for probabilistic inferences in quantum-like Bayesian networks, based on the notion of balanced intensity waves. The general idea is to balance the intensity waves resulting from quantum interference in such a way that, during Bayes normalisation, they cancel each other. With this representation, we also propose the law of maximum uncertainty, which is a method to predict these paradoxes by selecting the amplitudes of the wave with the highest entropy. Empirical results show that the law of balance together with the law of maximum uncertainty were able to accurately predict different experiments from cognitive psychology showing paradoxical or irrational decisions, namely in the Prisoner’s Dilemma game and the Two-Stage Gambling Game.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classic probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions gives the squared amplitude the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classic probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic hidden variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. Uncovering this variable confirms the possibility that it could be the stochastic archetype of quantum probability.


2021 ◽  
Author(s):  
Tim C Jenkins

Abstract Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years Man’ko and co-authors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely that mathematically the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.


2013 ◽  
Vol 13 (5&6) ◽  
pp. 430-438
Author(s):  
Takuya Machida

Since a limit distribution of a discrete-time quantum walk on the line was derived in 2002, a lot of limit theorems for quantum walks with a localized initial state have been reported. On the other hand, in quantum probability theory, there are four notions of independence (free, monotone, commuting, and boolean independence) and quantum central limit theorems associated to each independence have been investigated. The relation between quantum walks and quantum probability theory is still unknown. As random walks are fundamental models in the Kolmogorov probability theory, can the quantum walks play an important role in quantum probability theory? To discuss this problem, we focus on a discrete-time 2-state quantum walk with a non-localized initial state and present a limit theorem. By using our limit theorem, we generate probability laws in the quantum central limit theorems from the quantum walk.


2019 ◽  
Author(s):  
Mark Schweizer

Abstract The merits of using subjective probability theory as a normative standard for evidence evaluation by legal fact-finders have been hotly debated for decades. Critics argue that formal mathematical models only lead to an apparent precision that obfuscates the ad-hoc nature of the many assumptions that underlie the model. Proponents of using subjective probability theory as normative standard for legal decision makers, specifically proponents of using Bayesian networks as decision aids in complex evaluations of evidence, must show that formal models have tangible benefits over the more natural, holistic assessment of evidence by explanatory coherence. This article demonstrates that the assessment of evidence using a Bayesian network parametrized with values obtained from the decision makers reduces role-induced bias, a bias that has been largely resistant to de-biasing attempts so far.


Author(s):  
Yan Wang

Variability is inherent randomness in systems, whereas uncertainty is due to lack of knowledge. In this paper, a generalized multiscale Markov (GMM) model is proposed to quantify variability and uncertainty simultaneously in multiscale system analysis. The GMM model is based on a new imprecise probability theory that has the form of generalized interval, which is a Kaucher or modal extension of classical set-based intervals to represent uncertainties. The properties of the new definitions of independence and Bayesian inference are studied. Based on a new Bayes’ rule with generalized intervals, three cross-scale validation approaches that incorporate variability and uncertainty propagation are also developed.


2013 ◽  
Vol 36 (3) ◽  
pp. 279-280 ◽  
Author(s):  
Christina Behme

AbstractI argue that the overly simplistic scenarios discussed by Pothos & Busemeyer (P&B) establish at best that quantum probability theory (QPT) is a logical possibility allowing distinct predictions from classical probability theory (CPT). The article fails, however, to provide convincing evidence for the proposal that QPT offers unique insights regarding cognition and the nature of human rationality.


Sign in / Sign up

Export Citation Format

Share Document