scholarly journals Devonian agglutinated polychaete tubes: all in all it's just another grain in the wall

2021 ◽  
Vol 288 (1955) ◽  
pp. 20211143
Author(s):  
Bruno Becker-Kerber ◽  
Rodrigo Scalise Horodyski ◽  
Lucas del Mouro ◽  
Daniel Sedorko ◽  
Ilana Lehn ◽  
...  

Biomineralized and organic metazoan tubular skeletons are by far the most common in the fossil record. However, several groups of organisms are also able to agglutinate particles to construct more rigid structures. Here we present a novel type of agglutinated tube from the austral and endemic palaeobiota of the Malvinokaffric realm (Devonian, Brazil). This fossil is characterized by an agglutinated tube made of silt-sized particles forming an unusual flanged morphology that is not known from the fossil record. Besides being able to select specific particles, these organisms probably lived partially buried and were detritus/suspension feeders. Comparisons across different modern groups show that these fossils are strongly similar to tubes made by polychaetes, specifically from the family Maldanidae. If this interpretation is correct, then an early divergence of the Sedentaria clade may have occurred before the Devonian.

Zootaxa ◽  
2009 ◽  
Vol 2107 (1) ◽  
pp. 41-52 ◽  
Author(s):  
CAROLINA M VOLOCH ◽  
PABLO R FREIRE ◽  
CLAUDIA A M RUSSO

Fossil record of penaeids indicates that the family exists since the Triassic period, but extant genera appeared only recently in Tertiary strata. Molecular based divergence time estimates on the matter of penaeid radiation were never properly addressed, due to shortcomings of the global molecular clock assumptions. Here, we studied the diversification patterns of the family, uncovering, more specifically, a correlation between fossil and extant Penaeid fauna. For this, we have used a Bayesian framework that does not assume a global clock. Our results suggest that Penaeid genera originated between 20 million years ago and 43 million years ago, much earlier than expected by previous molecular studies. Altogether, these results promptly discard late Tertiary or even Quaternary hypotheses that presumed a major glaciations influence on the diversification patterns of the family.


2018 ◽  
Vol 35 (3) ◽  
pp. 203-214 ◽  
Author(s):  
Pierre Broly ◽  
María De Lourdes Serrano-Sánchez ◽  
Francisco J. Vega

Currently, the Onisicdea (terrestrial isopods) is a massive Crustacea suborder of more than 3 700 species, but our knowledge of their paleodiversity is poor. In this paper, we present ten fossils of Crinocheta, the largest clade within the Onisicdea, discovered in Early Miocene (23 Ma) amber of Chiapas. We described three new genera and six new species including Palaeolibrinus spinicornis gen. nov. sp. nov., Armadilloniscus miocaenicus sp. nov., Archeostenoniscus robustus gen. nov. sp. nov., Archeostenoniscus mexicanus sp. nov., Palaeospherarmadillo mazanticus gen. nov. sp. nov., and Palaeospherarmadillo rotundus sp. nov. This study represents the first fossil record of the family Detonidae, Olibrinidae, and “Stenoniscidae”. From a paleoenvironmental reconstruction perspective, the oniscidean fauna presented here supports a particularly wet paleoenvironment, under brackish water influence, similar to an estuary.


Zootaxa ◽  
2021 ◽  
Vol 5067 (1) ◽  
pp. 135-143
Author(s):  
ELENA D. LUKASHEVICH

The fossil record of Triassic Diptera is still poor, with the oldest dipteran assemblage described from the Upper Buntsandstein of the ‘Grès à Voltzia’ Formation (early Anisian, France). From the stratigraphically closest insect fauna of the Röt Formation of Lower Franconia, Germany, the first Diptera, Bashkonia franconica gen. et sp. nov. is described based on an isolated wing. The new genus is assigned to the family Nadipteridae, bridging the gap between two other genera included.  


2021 ◽  
Vol 4 (2) ◽  
pp. 165-170
Author(s):  
ANDRÉ NEL ◽  
DARAN ZHENG

The new ‘suborder’ Cephalozygoptera was recently proposed for three fossil families of damselfly-like Odonata, on the basis of three characters of the head. Here we show, thanks to counter-examples of the presence of these characters in compression fossils of genuine Zygoptera, that these ‘characters’ do not exist in reality but are due to deformations and compression of the heads, a very frequent phenomenon in the fossil record of the whole superorder Odonatoptera. Furthermore, these alleged characters would have to have been regarded as symplesiomorphies, insufficient to support a new clade. Consequently, we consider the Cephalozygoptera as unfounded, to be rejected in the current state of knowledge. A new phylogenetic analysis of the whole clade Panodonata would be welcome. We also discuss the position of some previously described fossils: the Paleocene genus Valerea is restored in the Epallagidae (Euphaeidae), and the two Burmese amber genera Electrodysagrion and Palaeodysagrion are restored in the family Dysagrionidae.


Zootaxa ◽  
2020 ◽  
Vol 4838 (1) ◽  
pp. 137-142
Author(s):  
PRIYA AGNIHOTRI ◽  
KAJAL CHANDRA ◽  
ANUMEHA SHUKLA ◽  
HUKAM SINGH ◽  
RAKESH C. MEHROTRA

A fossil of a mayfly nymph that shows similarities with the modern genus Teloganella Ulmer, 1939 of the family Teloganellidae is recorded for the first time from the Indian subcontinent. It is systematically described from the Gurha lignite mine of Bikaner, Rajasthan which belongs to the Palana Formation (late Paleocene-early Eocene). As assignment of the fossil to a modern species of Teloganella is difficult due to indistinguishable location of gills in the impression, a new species, Teloganella gurhaensis Agnihotri et al., sp. nov. is instituted to include this fossil naiad resembling the extant Teloganella. 


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Deborah Wall-Palmer ◽  
Arie W. Janssen ◽  
Erica Goetze ◽  
Le Qin Choo ◽  
Lisette Mekkes ◽  
...  

Abstract Background The aragonite shelled, planktonic gastropod family Atlantidae (shelled heteropods) is likely to be one of the first groups to be impacted by imminent ocean changes, including ocean warming and ocean acidification. With a fossil record spanning at least 100 Ma, atlantids have experienced and survived global-scale ocean changes and extinction events in the past. However, the diversification patterns and tempo of evolution in this family are largely unknown. Results Based on a concatenated maximum likelihood phylogeny of three genes (cytochrome c oxidase subunit 1 mitochondrial DNA, 28S and 18S ribosomal rRNA) we show that the three extant genera of the family Atlantidae, Atlanta, Protatlanta and Oxygyrus, form monophyletic groups. The genus Atlanta is split into two groups, one exhibiting smaller, well ornamented shells, and the other having larger, less ornamented shells. The fossil record, in combination with a fossil-calibrated phylogeny, suggests that large scale atlantid extinction was accompanied by considerable and rapid diversification over the last 25 Ma, potentially driven by vicariance events. Conclusions Now confronted with a rapidly changing modern ocean, the ability of atlantids to survive past global change crises gives some optimism that they may be able to persist through the Anthropocene.


2009 ◽  
Vol 83 (4) ◽  
pp. 562-574 ◽  
Author(s):  
Daniel B. Blake ◽  
Roger W. Portell

Oyenaster oblidus, Ocalaster timucum, and Ocalaster seloyi are new genera and species of the family Goniasteridae (Asteroidea) described from the Eocene Ocala Limestone of Florida. Although the fossil record of asteroids is sketchy, goniasterids appear to have been important contributors to marine communities since at least the Middle Jurassic. Similarities between living goniasterids and their fossil precursors indicate that plesiomorphy and convergence have been important in family history, and as a result, taxonomic interpretation is challenging. Even partial fossil goniasterids are rare, forcing systematists to rely heavily on isolated marginal ossicles, although some authors have expressed the need for caution. Building around three new taxa, we suggest that broader approaches can aid systematic interpretation of all crown-group asteroids. We also suggest that the inevitably idiosyncratic interpretations of marginal-based systematics can be partially tested using blind evaluations.


2020 ◽  
Vol 25 (10) ◽  
pp. 1754-1764
Author(s):  
Andrés O. Porta ◽  
Daniel N. Proud ◽  
Peter Michalik ◽  
Fabio Akashi Hernandes

A protonymph of the snout mite genus Odontoscirus Thor, 1913, O. cretacico sp. nov., is described and illustrated from Cretaceous amber of Myanmar is described and illustrated, constituting the earliest fossil species described of the family Bdellidae (ca. 99 Ma). After reexamining the literature and recollected specimens from type localities, we conclude that the following five recent species do not belong to the genus Biscirus and should be transferred to Odontoscirus: O. anomalicornis (Berlese 1916) comb. nov., O. symmetricus (Kramer 1898) comb. nov., O. uncinatus (Kramer 1898) comb. nov., O. norvegicus (Thor 1905) comb. nov., and O. insularis (Willmann 1939) comb. nov. The implications of the fossil record of the family is discussed.


2020 ◽  
Vol 94 (4) ◽  
pp. 696-715 ◽  
Author(s):  
Mateusz Zmudzinski

AbstractThe fossil record of the family Camerobiidae has been represented by only one species, Neophyllobius succineus Bolland and Magowski, 1990, described from Eocene Baltic amber. These prostigmatan mites are distinguishable by their distinctly long and slender stilt-like legs, and they are associated with aboveground vegetation where they hunt for other small invertebrates. This paper enhances the knowledge of fossil stilt-legged mites. Two new fossil species, N. electrus new species and N. glaesus new species, are described from samples of Baltic amber, and remarks on their morphology and taphonomy are provided. The discovery is complemented with a discussion on morphological singularities (the shape of the prodorsum, the location of setae h1 and h2 in living specimens, and lengths of genual setae), an anomaly of hypertrophied seta (found in the N. glaesus holotype), and some biogeographical issues.UUID: http://zoobank.org/d1602384-ae4f-4f90-b4a1-6cdedd77c9e1


Sign in / Sign up

Export Citation Format

Share Document