scholarly journals Marine heatwave challenges solutions to human–wildlife conflict

2021 ◽  
Vol 288 (1964) ◽  
Author(s):  
Jameal F. Samhouri ◽  
Blake E. Feist ◽  
Mary C. Fisher ◽  
Owen Liu ◽  
Samuel M. Woodman ◽  
...  

Despite the increasing frequency and magnitude of extreme climate events, little is known about how their impacts flow through social and ecological systems or whether management actions can dampen deleterious effects. We examined how the record 2014–2016 Northeast Pacific marine heatwave influenced trade-offs in managing conflict between conservation goals and human activities using a case study on large whale entanglements in the U.S. west coast's most lucrative fishery (the Dungeness crab fishery). We showed that this extreme climate event diminished the power of multiple management strategies to resolve trade-offs between entanglement risk and fishery revenue, transforming near win–win to clear win–lose outcomes (for whales and fishers, respectively). While some actions were more cost-effective than others, there was no silver-bullet strategy to reduce the severity of these trade-offs. Our study highlights how extreme climate events can exacerbate human–wildlife conflict, and emphasizes the need for innovative management and policy interventions that provide ecologically and socially sustainable solutions in an era of rapid environmental change.

2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Julia Vieira da Cunha Ávila ◽  
Charles R. Clement ◽  
André Braga Junqueira ◽  
Tamara Ticktin ◽  
Angela May Steward

2017 ◽  
Vol 23 (10) ◽  
pp. 4045-4057 ◽  
Author(s):  
Ross E. Boucek ◽  
Michael R. Heithaus ◽  
Rolando Santos ◽  
Philip Stevens ◽  
Jennifer S. Rehage

2019 ◽  
Vol 96 ◽  
pp. 669-683 ◽  
Author(s):  
Enliang Guo ◽  
Jiquan Zhang ◽  
Yongfang Wang ◽  
Lai Quan ◽  
Rongju Zhang ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109126 ◽  
Author(s):  
Selena Ahmed ◽  
John Richard Stepp ◽  
Colin Orians ◽  
Timothy Griffin ◽  
Corene Matyas ◽  
...  

Ecology ◽  
2019 ◽  
Vol 100 (2) ◽  
pp. e02578 ◽  
Author(s):  
Martina Dal Bello ◽  
Luca Rindi ◽  
Lisandro Benedetti‐Cecchi

2021 ◽  
Vol 15 (3) ◽  
pp. e0009182
Author(s):  
Cameron Nosrat ◽  
Jonathan Altamirano ◽  
Assaf Anyamba ◽  
Jamie M. Caldwell ◽  
Richard Damoah ◽  
...  

Climate change and variability influence temperature and rainfall, which impact vector abundance and the dynamics of vector-borne disease transmission. Climate change is projected to increase the frequency and intensity of extreme climate events. Mosquito-borne diseases, such as dengue fever, are primarily transmitted by Aedes aegypti mosquitoes. Freshwater availability and temperature affect dengue vector populations via a variety of biological processes and thus influence the ability of mosquitoes to effectively transmit disease. However, the effect of droughts, floods, heat waves, and cold waves is not well understood. Using vector, climate, and dengue disease data collected between 2013 and 2019 in Kenya, this retrospective cohort study aims to elucidate the impact of extreme rainfall and temperature on mosquito abundance and the risk of arboviral infections. To define extreme periods of rainfall and land surface temperature (LST), we calculated monthly anomalies as deviations from long-term means (1983–2019 for rainfall, 2000–2019 for LST) across four study locations in Kenya. We classified extreme climate events as the upper and lower 10% of these calculated LST or rainfall deviations. Monthly Ae. aegypti abundance was recorded in Kenya using four trapping methods. Blood samples were also collected from children with febrile illness presenting to four field sites and tested for dengue virus using an IgG enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). We found that mosquito eggs and adults were significantly more abundant one month following an abnormally wet month. The relationship between mosquito abundance and dengue risk follows a non-linear association. Our findings suggest that early warnings and targeted interventions during periods of abnormal rainfall and temperature, especially flooding, can potentially contribute to reductions in risk of viral transmission.


2017 ◽  
Vol 114 (19) ◽  
pp. 4881-4886 ◽  
Author(s):  
Noah S. Diffenbaugh ◽  
Deepti Singh ◽  
Justin S. Mankin ◽  
Daniel E. Horton ◽  
Daniel L. Swain ◽  
...  

Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.


Sign in / Sign up

Export Citation Format

Share Document