Quantization of coupled orbits in metals II. The two-dimensional network, with special reference to the properties of zinc

In an earlier paper the wave functions and eigenvalues for an electron moving in a magnetic field, and interacting with one component of lattice potential, were analysed in terms of a model of coupled localized orbits. The model is now examined in more detail and shown to be a reasonable approximation to one possible representation of the true wave function. It is then extended to cover the case of a two-dimensional metal, the model now consisting of a network of interlocking orbits, on which an electron can move with specified probability amplitude for making a transition between orbits at any junction point. The problem of periodicity of the structure is discussed carefully, and it is found that the phase changes accompanying gauge transformations assume great importance. It is shown that the magnetic field imposes a periodicity on the network which is not in general compatible with that of the lattice potential, and the consequences are briefly investigated with the conclusion that they are probably observable only with difficulty. A special case, the hexagonal network, is then solved exactly, the magnetic field being chosen to avoid the above mentioned difficulty of incompatible periodicities. From the solution an energy level diagram is constructed, showing how the free-electron levels are broadened by the lattice potential and, as this is made stronger, reconstruct themselves into the sharp level system predicted by Onsager’s semi-classical method. In the intermediate stages of the process the bands contact each other frequently and other types of singularity appear. It is claimed that the structure revealed by this simple model is more elaborate than anything that could be readily derived by a perturbation treatment of the magnetic field. The electrons are able to move as quasi-particles in straight lines in any direction through the lattice, the velocity being derived from the energy level structure by the standard formula h~x^ kE.. When the bands are at their broadest the velocity is comparable with that of a free electron near the corners of the Brillouin zone. The contribution of the quasiparticles to the conductivity of the metal is evaluated on the assumption that the width of individual bands is rather less than kT ,so that much of the rapid variation of conductivity with Fermi energy is smoothed out. The variations that are left are still considerable and have a periodicity determined by the smallest quantized orbits. The results of the theory are applied to the fairly extensive, though not always consistent,observations of oscillatory behaviour in zinc. The anomalous variation with field strength of the de Haas-van Alphen amplitude can be satisfactorily explained if it is assumed that the energy gap across the sides of the Brillouin zone is about 0.027 eV. The vigorous resistance oscillations, attributed by Stark to magnetic breakdown changing some of the hole orbits into electron orbits, are shown to require more than this, though this effect is certainly important and is implied by the theory. It is suggested that the quasi-particles provide the necessary extra mechanism to account for resistance and Hall-effect data, but quantitative comparison is far from satisfactory, and it is concluded that more data and further analysis are probably needed. Stark’s proposal that the fine structure of the oscillations are due to spin, with a g -factor of 34, is disputed since it appears that the quasi-particle conductivity possesses the right sort of fine structure to account for the observations.

2006 ◽  
Vol 15 (06) ◽  
pp. 1263-1271 ◽  
Author(s):  
A. SOYLU ◽  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the case with no magnetic field analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for n=2-10 and m=0-1 states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


Author(s):  
Jasim Mohmed Jasim Jasim ◽  
Iryna Shvedchykova ◽  
Igor Panasiuk ◽  
Julia Romanchenko ◽  
Inna Melkonova

An approach is proposed to carry out multivariate calculations of the magnetic field distribution in the working gaps of a plate polygradient matrix of an electromagnetic separator, based on a combination of the advantages of two- and three-dimensional computer modeling. Two-dimensional geometric models of computational domains are developed, which differ in the geometric dimensions of the plate matrix elements and working air gaps. To determine the vector magnetic potential at the boundaries of two-dimensional computational domains, a computational 3D experiment is carried out. For this, three variants of the electromagnetic separator are selected, which differ in the size of the working air gaps of the polygradient matrices. For them, three-dimensional computer models are built, the spatial distribution of the magnetic field in the working intervals of the electromagnetic separator matrix and the obtained numerical values of the vector magnetic potential at the boundaries of the computational domains are investigated. The determination of the values of the vector magnetic potential for all other models is carried out by interpolation. The obtained values of the vector magnetic potential are used to set the boundary conditions in a computational 2D experiment. An approach to the choice of a rational version of a lamellar matrix is substantiated, which provides a solution to the problem according to the criterion of the effective area of the working area. Using the method of simple enumeration, a variant of the structure of a polygradient matrix with rational geometric parameters is selected. The productivity of the electromagnetic separator with rational geometric parameters of the matrix increased by 3–5 % with the same efficiency of extraction of ferromagnetic inclusions in comparison with the basic version of the device


2021 ◽  
pp. 46-55
Author(s):  
А.В. Никитин ◽  
А.В. Михайлов ◽  
А.С. Петров ◽  
С.Э. Попов

A technique for determining the depth and opening of a surface two-dimensional defect in a ferromagnet is presented, that is resistant to input data errors. Defects and magnetic transducers are located on opposite sides of the metal plate. The nonlinear properties of the ferromagnet are taken into account. The components of the magnetic field in the metal were reconstructed from the measured components of the magnetic field above the defect-free surface of the metal. As a result of numerical experiments, the limits of applicability of the method were obtained. The results of the technique have been verified experimentally.


Author(s):  
Y. G. Yeroshenko ◽  
V. A. Styashkin ◽  
W. Riedler ◽  
K. Schwingenschuh ◽  
C. T. Russel

Although the photosphere is a uniform region for scales greater than the granulation, the fact that the magnetic field strength falls off less sharply than the gas pressure leads to strong magnetic influence at greater heights in the solar atmosphere. This magnetic influence leads to non-uniformity and fine structure in the chromosphere and corona. The existence of such structure has been deduced mostly from measurements of photospheric phenomena; in particular, from measurements of photospheric velocity fields (Leighton, Noyes & Simon 1962) and of photospheric magnetic fields (Bumba & Howard 1965). The determining factor would thus appear to be in the photosphere; but visible effects only are produced in the chromosphere and corona. In recent years, high resolution filter photography has enabled us to recognize different regions of the chromosphere, where qualitatively different structure is associated with distinct magnetic field patterns. This progress has been possible because of better Lyot filters, better films and better observing sites; the spectroheliograph has always been limited for high resolution work by the finite slit width and the difficulty of accurate guiding during the long exposures.


1988 ◽  
Vol 02 (03n04) ◽  
pp. 471-481 ◽  
Author(s):  
K. Y. LIN ◽  
F. Y. WU

It is shown that the free energy and the magnetization of an Ising model in the magnetic field H = iπkT/2 can be obtained directly from corresponding expressions of these quantities in zero field, provided that the latter are known for sufficiently anisotropic interactions. Using this approach we derive explicit expressions of the free energy and the magnetization at H = iπkT/2 for a number of two-dimensional lattices.


Sign in / Sign up

Export Citation Format

Share Document