scholarly journals The influence of resistivity gradients on shock conditions for a Petschek reconnection geometry

2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.

2006 ◽  
Vol 15 (06) ◽  
pp. 1263-1271 ◽  
Author(s):  
A. SOYLU ◽  
O. BAYRAK ◽  
I. BOZTOSUN

In this paper, the energy eigenvalues of the two dimensional hydrogen atom are presented for the arbitrary Larmor frequencies by using the asymptotic iteration method. We first show the energy eigenvalues for the case with no magnetic field analytically, and then we obtain the energy eigenvalues for the strong and weak magnetic field cases within an iterative approach for n=2-10 and m=0-1 states for several different arbitrary Larmor frequencies. The effect of the magnetic field on the energy eigenvalues is determined precisely. The results are in excellent agreement with the findings of the other methods and our method works for the cases where the others fail.


Geophysics ◽  
1979 ◽  
Vol 44 (5) ◽  
pp. 947-958 ◽  
Author(s):  
E. Gomez Trevino ◽  
R. N. Edwards

An inexpensive, rapid method has been developed for computing all three components of the magnetic field due to galvanic current flow from a point electrode in the vicinity of a conductive subsurface structure of infinite strike‐length and arbitrary cross‐section. For any three‐dimensional (3-D) structure, the magnetic field may be written as a sum of surface integrals over boundaries defining changes in conductivity by a direct modification of the Biot‐Savart law. The integrand of each surface integral includes the components of the electric field tangential to the boundary, which may be evaluated on the boundary using a standard integral equation technique. In the case of a two‐dimensional (2-D) structure, a reformulation of the theory by taking a one‐dimensional Fourier transform along the strike results in the reduction of both the surface integrals necessary to solve the integral equation for the electric field, and the integrals used in computing the magnetic field, to line integrals in wavenumber domain. We evaluate the integrals numerically and solve the integral equation for each of about ten wavenumbers; finally, we obtain the magnetic field in space domain through a concluding one‐dimensional inverse Fourier transform. Type curves and characteristic curves for the simple model of a buried horizontal cylinder beneath a thin layer of conductive overburden are constructed. In the absence of overburden, the half‐width of the anomaly is linearly related to the depth of the cylinder. In the presence of overburden, the form of the anomaly may be predicted in a simple manner from the corresponding anomaly in the absence of overburden, provided the distance from the current source is sufficiently large for most of the available current to have penetrated the overburden.


Author(s):  
Jasim Mohmed Jasim Jasim ◽  
Iryna Shvedchykova ◽  
Igor Panasiuk ◽  
Julia Romanchenko ◽  
Inna Melkonova

An approach is proposed to carry out multivariate calculations of the magnetic field distribution in the working gaps of a plate polygradient matrix of an electromagnetic separator, based on a combination of the advantages of two- and three-dimensional computer modeling. Two-dimensional geometric models of computational domains are developed, which differ in the geometric dimensions of the plate matrix elements and working air gaps. To determine the vector magnetic potential at the boundaries of two-dimensional computational domains, a computational 3D experiment is carried out. For this, three variants of the electromagnetic separator are selected, which differ in the size of the working air gaps of the polygradient matrices. For them, three-dimensional computer models are built, the spatial distribution of the magnetic field in the working intervals of the electromagnetic separator matrix and the obtained numerical values of the vector magnetic potential at the boundaries of the computational domains are investigated. The determination of the values of the vector magnetic potential for all other models is carried out by interpolation. The obtained values of the vector magnetic potential are used to set the boundary conditions in a computational 2D experiment. An approach to the choice of a rational version of a lamellar matrix is substantiated, which provides a solution to the problem according to the criterion of the effective area of the working area. Using the method of simple enumeration, a variant of the structure of a polygradient matrix with rational geometric parameters is selected. The productivity of the electromagnetic separator with rational geometric parameters of the matrix increased by 3–5 % with the same efficiency of extraction of ferromagnetic inclusions in comparison with the basic version of the device


2021 ◽  
pp. 46-55
Author(s):  
А.В. Никитин ◽  
А.В. Михайлов ◽  
А.С. Петров ◽  
С.Э. Попов

A technique for determining the depth and opening of a surface two-dimensional defect in a ferromagnet is presented, that is resistant to input data errors. Defects and magnetic transducers are located on opposite sides of the metal plate. The nonlinear properties of the ferromagnet are taken into account. The components of the magnetic field in the metal were reconstructed from the measured components of the magnetic field above the defect-free surface of the metal. As a result of numerical experiments, the limits of applicability of the method were obtained. The results of the technique have been verified experimentally.


2019 ◽  
Vol 15 (S354) ◽  
pp. 268-279
Author(s):  
Dmitry V. Bisikalo ◽  
Andrey G. Zhilkin

AbstractHot Jupiters have extended gaseous (ionospheric) envelopes, which extend far beyond the Roche lobe. The envelopes are loosely bound to the planet and, therefore, are strongly influenced by fluctuations of the stellar wind. We show that, since hot Jupiters are close to the parent stars, magnetic field of the stellar wind is an important factor defining the structure of their magnetospheres. For a typical hot Jupiter, velocity of the stellar wind plasma flow around the atmosphere is close to the Alfvén velocity. As a result stellar wind fluctuations, such as coronal mass ejections, can affect the conditions for the formation of a bow shock around a hot Jupiter. This effect can affect observational manifestations of hot Jupiters.


1976 ◽  
Vol 71 ◽  
pp. 353-366 ◽  
Author(s):  
E. R. Priest ◽  
A. M. Soward

The first model for ‘fast’ magnetic field reconnection at speeds comparable with the Alfvén speed was put forward by Petschek (1964). It involves one shock wave in each quadrant radiating from a central diffusion region and leads to a maximum reconnection rate dependent on the electrical conductivity but typically of order 10-1 or 10-2 of the Alfvén speed. Sonnerup (1970) and Yeh and Axford (1970) then looked for similarity solutions of the magnetohydrodynamic equations, valid at large distances from the diffusion region; by contrast with Petschek's analysis, their models have two waves in each quadrant and produce no sub-Alfvénic limit on the reconnection rate.Our approach has been, like Yeh and Axford, to look for solutions valid far from the diffusion region, but we allow only one wave in each quadrant, since the second is externally generated and so unphysical for astrophysical applications. The result is a model which qualitatively supports Petschek's picture; in fact it can be regarded as putting Petschek's model on a firm mathematical basis. The differences are that the shock waves are curved rather than straight and the maximum reconnection rate is typically a half of what Petschek gave. The paper is a summary of a much larger one (Soward and Priest, 1976).


1993 ◽  
Vol 157 ◽  
pp. 415-419
Author(s):  
D. Breitschwerdt ◽  
H.J. Völk ◽  
V. Ptuskin ◽  
V. Zirakashvili

It is argued that the description of the magnetic field in halos of galaxies should take into account its dynamical coupling to the other major components of the interstellar medium, namely thermal plasma and cosmic rays (CR's). It is then inevitable to have some loss of gas and CR's (galactic wind) provided that there exist some “open” magnetic field lines, facilitating their escape, and a sufficient level of self-generated waves which couple the particles to the gas. We discuss qualitatively the topology of the magnetic field in the halo and show how galactic rotation and magnetic forces can be included in such an outflow picture.


Sign in / Sign up

Export Citation Format

Share Document