Analysis of developable shells with special reference to the finite element method and circular cylinders

The paper begins by noting that the practical and efficient numerical analysis of thin walled shells is far from a reality. Groundwork for the investigation starts with an examination of existing sufficiency conditions for convergence of the finite element method of analysis with refinement of mesh size; new and more practical conditions are then given specifically for shells. Working formulae of a suitable first approximation theory for the linear small deflexion behaviour are then given for arbitrary shells in lines of curvature and in geodesic coordinates. A variational principle is introduced which is more general than that for the well known assumed stress hybrid finite element model; its purpose is to provide a means to overcome the excessive rank deficiency which is sometimes encountered in the derive element stiffness matrix. , The formulae are next specialized to general developable shells for they are tne simplest to analyse and frequently occur in technology. Emphasis is given to the derivation of general formulae governing inextensional deformation, membrane action and rigid body movement because these constitute important factors in any adequate numerical analysis. . . , Specific application is made to circular cylindrical shells by first considering the interpolation of the kinematic continuity conditions along an arbitrary geodesic line. Details and numerical examples are provided for the first known fully compatible lines of curvature rectangular finite element which directly recovers arbitrary rigid body movements as well as inextensional deformations and membrane actions. The paper concludes with details and numerical examples of an arbitrarily shaped triangular finite element which employs the above mentioned variational principle m conjunction with linearly varying stress fields. All the rigid body movements are directly recovered as well as inextensional deformations and membrane actions. It is anticipated that this finite element and its derivatives will find widespread application.

1995 ◽  
Vol 05 (03) ◽  
pp. 351-365 ◽  
Author(s):  
V. SHUTYAEV ◽  
O. TRUFANOV

This paper is concerned with the numerical analysis of the mathematical model for a semiconductor device with the use of the Boltzmann equation. A mixed initial-boundary value problem for nonstationary Boltzmann-Poisson system in the case of one spatial variable is considered. A numerical algorithm for solving this problem is constructed and justified. The algorithm is based on an iterative process and the finite element method. A numerical example is presented.


1968 ◽  
Vol 35 (2) ◽  
pp. 274-278 ◽  
Author(s):  
M. W. Johnson ◽  
R. W. McLay

The foundations of the theory of the finite element method as it applies to linear elasticity are investigated. A particular boundary-value problem in plane stress is considered and the variational principle for the finite element method is shown to be equivalent to it. Mean and uniform convergence of the finite element solution to that of the boundary-value problem is demonstrated with careful consideration given to the stress singularities. A counterexample is presented in which a set of functions, admissible to the variational principle, is shown not to converge.


2020 ◽  
Vol 39 (2) ◽  
pp. 351-362
Author(s):  
M.M. Ufe ◽  
S.N. Apebo ◽  
A.Y. Iorliam

This study derived analytical solutions for the deflection of a rectangular cross sectional uniformly tapered cantilever beam with varying configurations of width and breadth acting under an end point load. The deflection equations were derived using a numerical analysis method known as the finite element method. The verification of these analytical solutions was done by deterministic optimisation of the equations using the ModelCenter reliability analysis software and the Abaqus finite element modelling and optimisation software. The results obtained show that the best element type for the finite element analysis of a tapered cantilever beam acting under an end point load is the C3D20RH (A 20-node quadratic brick, hybrid element with linear pressure and reduced integration) beam element; it predicted an end displacement of 0.05035 m for the tapered width, constant height cantilever beam which was the closest value to the analytical optimum of 0.05352 m. The little difference in the deflection value accounted for the numerical error which is inevitably present in the analyses of structural systems. It is recommended that detailed and accurate numerical analysis be adopted in the design of complex structural systems in order to ascertain the degree of uncertainty in design. Keywords: Deflection, Finite element method, deterministic optimisation, numerical error, cantilever beam.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Krzysztof Kosiuczenko ◽  
◽  
Robert Sosnowicz ◽  

The paper presents the results of simulation tests of the entry of a floating transporter to a water obstacle. The simulation tests were performed with the use of LS Dyna program, based on the finite element method (FEM). The computational model was developed and used in the simulation of the manoeuvre of entering the water obstacle for the extreme conditions, which are described by NATO standards. For a model, as an example vehicle, the floating transporter PTS-M was used. The results of the application of the elaborated model confirmed the possibility to utilise the method to verify the behaviour of a vehicle in a very important and difficult problem from the point of view of vehicle safety conditions.


Sign in / Sign up

Export Citation Format

Share Document