The role of nonlinear critical layers in boundary layer transition

Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called ‘critical layer’, with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.

1990 ◽  
Vol 43 (5S) ◽  
pp. S152-S157 ◽  
Author(s):  
E. J. Kerschen

The receptivity mechanisms by which free-stream disturbances generate instability waves in laminar boundary layers are discussed. Free-stream disturbances have wavelengths which are generally much longer than those of instability waves. Hence, the transfer of energy from the free-stream disturbance to the instability wave requires a wavelength conversion mechanism. Recent analyses using asymptotic methods have shown that the wavelength conversion takes place in regions of the boundary layer where the mean flow adjusts on a short streamwise length scale. This paper reviews recent progress in the theoretical understanding of these phenomena.


1997 ◽  
Vol 119 (3) ◽  
pp. 420-426 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

Measurements from heated boundary layers along a concave-curved test wall subject to high (initially 8 percent) free-stream turbulence intensity and strong (K = (ν/U∞2) dU∞/dx) as high as 9 × 10−6) acceleration are presented and discussed. Conditions for the experiments were chosen to roughly simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean velocity and temperature profiles as well as skin friction and heat transfer coefficients are presented. The transition zone is of extended length in spite of the high free-stream turbulence level. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low-free-stream-turbulence, turbulent flow correlations, but remain well above laminar flow values. The mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. To the authors’ knowledge, this is the first detailed documentation of a high-free-stream-turbulence boundary layer flow in such a strong acceleration field.


Author(s):  
Jonathan H. Watmuff

Experiments are described in which well-defined FSN (Free Stream Nonuniformity) distributions are introduced by placing fine wires upstream of the leading edge of a flat plate. Large amplitude spanwise thickness variations are present in the downstream boundary layer resulting from the interaction of the laminar wakes with the leading edge. Regions of elevated background unsteadiness appear on either side of the peak layer thickness, which share many of the characteristics of Klebanoff modes, observed at elevated Free Stream Turbulence (FST) levels. However, for the low background disturbance level of the free stream, the layer remains laminar to the end of the test section (Rx ≈ l.4×106) and there is no evidence of bursting or other phenomena associated with breakdown to turbulence. A vibrating ribbon apparatus is used to demonstrate that the deformation of the mean flow is responsible for substantial phase and amplitude distortion of Tollmien-Schlichting (TS) waves. Pseudo-flow visualization of hot-wire data shows that the breakdown of the distorted waves is more complex and occurs at a lower Reynolds number than the breakdown of the K-type secondary instability observed when the FSN is not present.


1984 ◽  
Vol 142 ◽  
pp. 431-449 ◽  
Author(s):  
Fred J. Hickernell

The problem of a finite-amplitude free disturbance of an inviscid shear flow on the beta-plane is studied. Perturbation theory and matched asymptotics are used to derive an evolution equation for the amplitude of a singular neutral mode of the Kuo equation. The effects of time-dependence, nonlinearity and viscosity are included in the analysis of the critical-layer flow. Nonlinear effects inside the critical layer rather than outside the critical layer determine the evolution of the disturbance. The nonlinear term in the evolution equation is some type of convolution integral rather than a simple polynomial. This makes the evolution equation significantly different from those commonly encountered in fluid wave and stability problems.


2007 ◽  
Vol 590 ◽  
pp. 265-294 ◽  
Author(s):  
XUESONG WU ◽  
P. A. STEWART ◽  
S. J. COWLEY

This paper is concerned with the nonlinear interaction between a planar and a pair of oblique Tollmien–Schlichting (T-S) waves which are phase-locked in that they travel with (nearly) the same phase speed. The evolution of such a disturbance is described using a high-Reynolds-number asymptotic approach in the so-called ‘upper--branch’ scaling regime. It follows that there exists a well-defined common critical layer (i.e. a thin region surrounding the level at which the basic flow velocity equals the phase speed of the waves to leading order) and the dominant interactions take place there. The disturbance is shown to evolve through several distinctive stages. In the first of these, the critical layer is in equilibrium and viscosity dominated. If a small mismatching exists in the phase speeds, the interaction between the planar and oblique waves leads directly to super-exponential growth/decay of the oblique modes. However, if the modes are perfectly phase-locked, the interaction in the first instance affects only the phase of the amplitude function of the oblique modes (so causing rapid wavelength shortening), while the modulus of the amplitude still evolves exponentially until the wavelength shortening produces a back reaction on the modulus (which then induces a super-exponential growth). Whether or not there is a small mismatch or a perfect match in the phase speeds, once the growth rate of the oblique modes becomes sufficiently large, the disturbance enters a second stage, in which the critical layer becomes both non-equilibrium and viscous in nature. The oblique modes continue to experience super-exponential growth, albeit of a different form from that in the previous stages, until the self-interaction between them, as well as their back effect on the planar mode, becomes important. At that point, the disturbance enters a third, fully interactive stage, during which the development of the disturbance is governed by the amplitude equations with the same nonlinear terms as previously derived for the phase-locked interaction of Rayleigh instability waves. The solution develops a singularity, leading to the final stage where the flow is governed by fully nonlinear three-dimensional inviscid triple-deck equations. The present work indicates that seeding a planar T-S wave can enhance the amplification of all oblique modes which share approximately its phase speed.


1996 ◽  
Vol 323 ◽  
pp. 133-171 ◽  
Author(s):  
Xuesong Wu ◽  
Philip A. Stewart ◽  
Stephen J. Cowley

The nonlinear development of a weakly modulated Tollmien-Schlichting wavetrain in a boundary layer is studied theoretically using high-Reynolds-number asymptotic methods. The ‘carrier’ wave is taken to be two-dimensional, and the envelope is assumed to be a slowly varying function of time and of the streamwise and spanwise variables. Attention is focused on the scalings appropriate to the so-called ‘upper branch’ and ‘high-frequency lower branch’. The dominant nonlinear effects are found to arise in the critical layer and the surrounding ‘diffusion layer’: nonlinear interactions in these regions can influence the development of the wavetrain by producing a spanwise-dependent mean-flow distortion. The amplitude evolution is governed by an integro-partial-differential equation, whose nonlinear term is history-dependent and involves the highest derivative with respect to the spanwise variable. Numerical solutions show that a localized singularity can develop at a finite distance downstream. This singularity seems consistent with the experimentally observed focusing of vorticity at certain spanwise locations, although quantitative comparisons have not been attempted.


2001 ◽  
Author(s):  
E. A. Lurie

Achievement of laminar boundary layer flow over sailboat appendages offers great potential for increased boat speed. Although some measurements of turbulence intensities and length scales in the upper ocean are available, it is unclear whether the local effects of wave action, high particulate content, and boat motions, would prohibit the development of large runs of laminar flow. In order to determine whether laminar boundary layers routinely develop at full-scale conditions, the laminar-to­turbulent boundary layer transition region was measured on the keel fin and bulb of a sailboat going upwind, downwind, and under tow. The experimental approach described in this paper will be useful for the development and evaluation of various seawater drag reduction methods.


Author(s):  
Masaharu Matsubara ◽  
P. Henrik Alfredsson ◽  
K. Johan A. Westin

Transition to turbulence in laminar boundary layers subjected to high levels of free stream turbulence (FST) can still not be reliably predicted, despite its technical importance, e.g. in the case of boundary layers developing on gas turbine blades. In a series of experiments in the MTL-wind tunnel at KTH the influence of grid-generated FST on boundary layer transition has been studied, with FST-levels up to 6%. It was shown from both flow visualisation and hot-wire measurements that the boundary layer develops unsteady streaky structures with high and low streamwise velocity. This leads to large amplitude low frequency fluctuations inside the boundary layer although the mean flow is still close to the laminar profile. Breakdown to turbulence occurs through an instability of the streaks which leads to the formation of turbulent spots. Accurate physical modelling of these processes seems to be needed in order to obtain a reliable prediction method.


1993 ◽  
Vol 256 ◽  
pp. 85-106 ◽  
Author(s):  
Reda R. Mankbadi ◽  
Xuesong Wu ◽  
Sang Soo Lee

A systematic theory is developed to study the nonlinear spatial evolution of the resonant triad in Blasius boundary layers. This triad consists of a plane wave at the fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low-frequency asymptotic scaling leads to a distinct critical layer wherein nonlinearity first becomes important, and the critical layer's nonlinear, viscous dynamics determine the development of the triad.The plane wave initially causes double-exponential growth of the oblique waves. The plane wave, however, continues to follow the linear theory, even when the oblique waves’ amplitude attains the same order of magnitude as that of the plane wave. However, when the amplitude of the oblique waves exceeds that of the plane wave by a certain level, a nonlinear stage comes into effect in which the self-interaction of the oblique waves becomes important. The self-interaction causes rapid growth of the phase of the oblique waves, which causes a change of the sign of the parametric-resonance term in the oblique-waves amplitude equation. Ultimately this effect causes the growth rate of the oblique waves to oscillate around their linear growth rate. Since the latter is usually small in the nonlinear regime, the net outcome is that the self-interaction of oblique waves causes the parametric resonance stage to be followed by an ‘oscillatory’ saturation stage.


Sign in / Sign up

Export Citation Format

Share Document