The role of starbursts in the formation of galaxies and active galactic nuclei

Author(s):  
Timothy Heckman
2019 ◽  
Vol 15 (S356) ◽  
pp. 247-251
Author(s):  
Biny Sebastian ◽  
Preeti Kharb ◽  
Christopher P. O’ Dea ◽  
Jack F. Gallimore ◽  
Stefi A. Baum ◽  
...  

AbstractThe role of starburst winds versus active galactic nuclei (AGN) jets/winds in the formation of the kiloparsec scale radio emission seen in Seyferts is not yet well understood. In order to be able to disentangle the role of various components, we have observed a sample of Seyfert galaxies exhibiting kpc-scale radio emission suggesting outflows, along with a comparison sample of starburst galaxies, with the EVLA B-array in polarimetric mode at 1.4 GHz and 5 GHz. The Seyfert galaxy NGC 2639, shows highly polarized secondary radio lobes, not observed before, which are aligned perpendicular to the known pair of radio lobes. The additional pair of lobes represent an older epoch of emission. A multi-epoch multi-frequency study of the starburst-Seyfert composite galaxy NGC 3079, reveals that the jet together with the starburst superwind and the galactic magnetic fields might be responsible for the well-known 8-shaped radio lobes observed in this galaxy. We find that many of the Seyfert galaxies in our sample show bubble-shaped lobes, which are absent in the starburst galaxies that do not host an AGN.


2020 ◽  
Vol 899 (1) ◽  
pp. L9
Author(s):  
Jenny E. Greene ◽  
David Setton ◽  
Rachel Bezanson ◽  
Katherine A. Suess ◽  
Mariska Kriek ◽  
...  

2010 ◽  
Vol 19 (06) ◽  
pp. 729-739 ◽  
Author(s):  
E. M. DE GOUVEIA DAL PINO ◽  
G. KOWAL ◽  
L. H. S. KADOWAKI ◽  
P. PIOVEZAN ◽  
A. LAZARIAN

One of the fundamental properties of astrophysical magnetic fields is their ability to change topology through reconnection and in doing so, to release magnetic energy, sometimes violently. In this work, we review recent results on the role of magnetic reconnection and associated heating and particle acceleration in jet/accretion disk systems, namely young stellar objects (YSOs), microquasars, and active galactic nuclei (AGNs).


1997 ◽  
Vol 163 ◽  
pp. 600-609
Author(s):  
J. H. Hough

AbstractOne of the main uses of polarimetry over the last decade, has been to identify the nature of AGN that are normally hidden from direct view by an optically and geometrically thick torus, and thereby to unify different classes of AGN. Of growing importance is the role that polarimetry can play in our understanding of the properties and structure of AGN on a size scale which cannot be resolved directly. We review the progress being made in understanding the role of disks, extended scattering regions, and the obscuring torus in AGN.


1990 ◽  
Vol 140 ◽  
pp. 447-448
Author(s):  
P. Pismis ◽  
E. Moreno ◽  
A. Garcia-Barreto

The existence of non–steady phenomena, namely activity in the form of radial motions (outflow) of matter from the nuclei of galaxies is well established at present. Active Galactic Nuclei (AGN) constitute a topic of great interest and are intensively studied by all existing observational techniques. Conventionally objects classified as AGN span a range from quasars, radio galaxies to Seyferts 1 and 2. It appears, however, that there exist galaxies which exhibit somewhat milder activity which does not qualify their inclusion in the AGN group. The designation of MAGN (M for mildly) was suggested in the past (Pismis, 1986) to cover the less energetic nuclei. It may be reasonable to consider that active nuclei form a sequence, the difference along it being due to the energetics of the nuclei, from the most active quasars and radio galaxies down to the mildest ones like M31 or our Galaxy. The phenomenon underlying the activity may thus be universal, subject to the intrinsic energetics of the nuclei (Pismis, 1987).


2019 ◽  
Vol 488 (1) ◽  
pp. 224-233 ◽  
Author(s):  
A V Chernoglazov ◽  
V S Beskin ◽  
V I Pariev

ABSTRACT In this first paper from forthcoming series of works devoted to radio image of relativistic jets from active galactic nuclei the role of internal structure of a flow is discussed. We determine the radial profiles of all physical values for reasonable Michel magnetization parameter σM and ambient pressure Pext. Maps of Doppler boosting factor δ and observed directions of linear polarization of synchrotron emission are also constructed.


2004 ◽  
Vol 614 (2) ◽  
pp. 558-567 ◽  
Author(s):  
H. Netzer ◽  
O. Shemmer ◽  
R. Maiolino ◽  
E. Oliva ◽  
S. Croom ◽  
...  

2013 ◽  
Vol 9 (S304) ◽  
pp. 349-350
Author(s):  
H. Miraghaei ◽  
H. G. Khosroshahi ◽  
H.-R. Klöckner ◽  
T. J. Ponman ◽  
N. N. Jetha ◽  
...  

AbstractFossil galaxy groups are energetically and morphologically ideal environments to study the intergalactic medium (IGM) heating, because their inter-galactic gas is undisturbed due to the lack of recent group scale mergers. We study the role of active galactic nuclei (AGN) in heating the IGM in a sample of five fossil galaxy groups by employing properties at 610 MHz and 1.4 GHz. We find that two of the dominant galaxies in fossil groups, ESO 3060170 and RX J1416.4+2315, are associated with the radio lobes. We evaluate the PdV work of the radio lobes and their corresponding heating power and compare to the X-ray emission loss within cooling radius. Our results show that the power due to mechanical heating is not sufficiently high to suppress the cooling.


2002 ◽  
Vol 19 (1) ◽  
pp. 147-151 ◽  
Author(s):  
Denise C. Gabuzda

AbstractVery long baseline interferometry (VLBI) polarisation measurements provide information about the parsec-scale magnetic field structures in compact active galactic nuclei (AGN), as well as the densities of relativistic and thermal electrons in the radio emitting regions. This paper reviews the role of polarisation VLBI in studies of AGN variability on both relatively long and short (intraday) timescales.


Sign in / Sign up

Export Citation Format

Share Document