scholarly journals Application of directed transfer function and network formalism for the assessment of functional connectivity in working memory task

Author(s):  
Katarzyna J. Blinowska ◽  
Maciej Kamiński ◽  
Aneta Brzezicka ◽  
Jan Kamiński

The dynamic pattern of functional connectivity during a working memory task was investigated by means of the short-time directed transfer function. A clear-cut picture of transmissions was observed with the main centres of propagation located in the frontal and parietal regions, in agreement with imaging studies and neurophysiological hypotheses concerning the mechanisms of working memory. The study of the time evolution revealed that most of the time short-range interactions prevailed, whereas the communication between the main centres of activity occurred more sparsely and changed dynamically in time. The patterns of connectivity were quantified by means of a network formalism based on assortative mixing—an approach novel in the field of brain networks study. By means of application of the above method, we have demonstrated the existence of a modular structure of brain networks. The strength of interaction inside the modules was higher than between modules. The obtained results are compatible with theories concerning metabolic energy saving and efficient wiring in the brain, which showed that preferred organization includes modular structure with dense connectivity inside the modules and more sparse connections between the modules. The presented detailed temporal and spatial patterns of propagation are in line with the neurophysiological hypotheses concerning the role of gamma and theta activity in information processing during a working memory task.

2019 ◽  
Vol 29 (03) ◽  
pp. 1850046 ◽  
Author(s):  
Maciej Kaminski ◽  
Aneta Brzezicka ◽  
Jan Kaminski ◽  
Katarzyna J. Blinowska

Transmission of EEG activity during a visual and auditory version of the working memory task based on the paradigm of linear syllogism was investigated. Our aim was to find possible similarities and differences in the synchronization patterns between brain structures during the same mental activity performed on different modality stimuli. The EEG activity transmission was evaluated by means of full frequency Directed Transfer Function (ffDTF) and short-time Directed Transfer Function (SDTF). SDTF provided information on dynamical propagation of EEG activity. The assortative mixing approach was applied to quantify coupling between regions of interest encompassing frontal, central and two posterior modules. The results showed similar schemes of coupling for both modalities with stronger coupling within the regions of interests than between them, which is concordant with the theories concerning efficient wiring and metabolic energy saving. The patterns of transmission showed main sources of activity in the anterior and posterior regions communicating intermittently in a broad frequency range. The differences between the patterns of transmission between the visual and auditory versions of working memory tasks were subtle and involved bigger propagation from the posterior electrodes towards the frontal ones during the visual task as well as from the temporal sites to the frontal ones during the auditory task.


2020 ◽  
Vol 18 (3) ◽  
pp. 181-193 ◽  
Author(s):  
Vaughn E. Bryant ◽  
Joseph M. Gullett ◽  
Eric C. Porges ◽  
Robert L. Cook ◽  
Kendall J. Bryant ◽  
...  

Background: Poorer working memory function has previously been associated with alcohol misuse, Human Immunodeficiency Virus (HIV) positive status, and risky behavior. Poorer working memory performance relates to alterations in specific brain networks. Objective: The current study examined if there was a relationship between brain networks involved in working memory and reported level of alcohol consumption during an individual’s period of heaviest use. Furthermore, we examined whether HIV status and the interaction between HIV and alcohol consumption was associated with differences in these brain networks. Methods: Fifty adults, 26 of whom were HIV positive, engaged in an n-back working memory task (0-back and 2-back trials) administered in a magnetic resonance imaging (MRI) scanner. The Kreek- McHugh-Schluger-Kellogg (KMSK) scale of alcohol consumption was used to characterize an individual’s period of heaviest use and correlates well with their risk for alcohol dependence. Connectivity analyses were conducted using data collected during n-back task. Results: Functional connectivity differences associated with greater alcohol consumption included negative connectivity, primarily from parietal attention networks to frontal networks. Greater alcohol consumption was also associated with positive connectivity from working memory nodes to the precuneus and paracingulate. HIV positive status was associated with more nodes of negative functional connectivity relative to alcohol consumption history alone, particularly in the frontoparietal networks. The HIV positive individuals with heavier drinking history related to negative fronto-parietal connectivity, along with positive connectivity from working memory nodes to mesolimbic regions. Conclusion: Findings allow for a better understanding of brain networks affected by HIV and alcohol and may provide avenues for interventions.


2015 ◽  
Vol 27 (8) ◽  
pp. 1633-1647 ◽  
Author(s):  
Ben Deen ◽  
Rebecca Saxe ◽  
Marina Bedny

In congenital blindness, the occipital cortex responds to a range of nonvisual inputs, including tactile, auditory, and linguistic stimuli. Are these changes in functional responses to stimuli accompanied by altered interactions with nonvisual functional networks? To answer this question, we introduce a data-driven method that searches across cortex for functional connectivity differences across groups. Replicating prior work, we find increased fronto-occipital functional connectivity in congenitally blind relative to blindfolded sighted participants. We demonstrate that this heightened connectivity extends over most of occipital cortex but is specific to a subset of regions in the inferior, dorsal, and medial frontal lobe. To assess the functional profile of these frontal areas, we used an n-back working memory task and a sentence comprehension task. We find that, among prefrontal areas with overconnectivity to occipital cortex, one left inferior frontal region responds to language over music. By contrast, the majority of these regions responded to working memory load but not language. These results suggest that in blindness occipital cortex interacts more with working memory systems and raise new questions about the function and mechanism of occipital plasticity.


Author(s):  
Yurui Gao ◽  
Muwei Li ◽  
Anna S Huang ◽  
Adam W Anderson ◽  
Zhaohua Ding ◽  
...  

BACKGROUND: Schizophrenia, characterized by cognitive impairments, arises from a disturbance of brain network. Pathological changes in white matter (WM) have been indicated as playing a role in disturbing neural connectivity in schizophrenia. However, deficits of functional connectivity (FC) in individual WM bundles in schizophrenia have never been explored; neither have cognitive correlates with those deficits. METHODS: Resting-state and spatial working memory task fMRI images were acquired on 67 healthy subjects and 84 patients with schizophrenia. The correlations in blood-oxygenation-level-dependent (BOLD) signals between 46 WM and 82 gray matter regions were quantified, analyzed and compared between groups under three scenarios (i.e., resting state, retention period and entire time of a spatial working memory task). Associations of FC in WM with cognitive assessment scores were evaluated for three scenarios. RESULTS: FC deficits were significant (p<.05) in external capsule, cingulum, uncinate fasciculus, genu and body of corpus callosum under all three scenarios. Deficits were also present in the anterior limb of the internal capsule and cerebral peduncle in task scenario. Decreased FCs in specific WM bundles associated significantly (p<.05) with cognitive impairments in working memory, processing speed and/or cognitive control. CONCLUSIONS: Decreases in FC are evident in several WM bundles in patients with schizophrenia and are significantly associated with cognitive impairments during both rest and working memory tasks. Furthermore, working memory tasks expose FC deficits in more WM bundles and more cognitive associates in schizophrenia than resting state does.


NeuroImage ◽  
2009 ◽  
Vol 47 ◽  
pp. S166
Author(s):  
DD Jolles ◽  
MJ Grol ◽  
MA Van Buchem ◽  
EA Crone ◽  
SARB Rombouts

Sign in / Sign up

Export Citation Format

Share Document