scholarly journals Addressing model error through atmospheric stochastic physical parametrizations: impact on the coupled ECMWF seasonal forecasting system

Author(s):  
Antje Weisheimer ◽  
Susanna Corti ◽  
Tim Palmer ◽  
Frederic Vitart

The finite resolution of general circulation models of the coupled atmosphere–ocean system and the effects of sub-grid-scale variability present a major source of uncertainty in model simulations on all time scales. The European Centre for Medium-Range Weather Forecasts has been at the forefront of developing new approaches to account for these uncertainties. In particular, the stochastically perturbed physical tendency scheme and the stochastically perturbed backscatter algorithm for the atmosphere are now used routinely for global numerical weather prediction. The European Centre also performs long-range predictions of the coupled atmosphere–ocean climate system in operational forecast mode, and the latest seasonal forecasting system—System 4—has the stochastically perturbed tendency and backscatter schemes implemented in a similar way to that for the medium-range weather forecasts. Here, we present results of the impact of these schemes in System 4 by contrasting the operational performance on seasonal time scales during the retrospective forecast period 1981–2010 with comparable simulations that do not account for the representation of model uncertainty. We find that the stochastic tendency perturbation schemes helped to reduce excessively strong convective activity especially over the Maritime Continent and the tropical Western Pacific, leading to reduced biases of the outgoing longwave radiation (OLR), cloud cover, precipitation and near-surface winds. Positive impact was also found for the statistics of the Madden–Julian oscillation (MJO), showing an increase in the frequencies and amplitudes of MJO events. Further, the errors of El Niño southern oscillation forecasts become smaller, whereas increases in ensemble spread lead to a better calibrated system if the stochastic tendency is activated. The backscatter scheme has overall neutral impact. Finally, evidence for noise-activated regime transitions has been found in a cluster analysis of mid-latitude circulation regimes over the Pacific–North America region.

2018 ◽  
Vol 146 (4) ◽  
pp. 1157-1180 ◽  
Author(s):  
Gregory C. Smith ◽  
Jean-Marc Bélanger ◽  
François Roy ◽  
Pierre Pellerin ◽  
Hal Ritchie ◽  
...  

The importance of coupling between the atmosphere and the ocean for forecasting on time scales of hours to weeks has been demonstrated for a range of physical processes. Here, the authors evaluate the impact of an interactive air–sea coupling between an operational global deterministic medium-range weather forecasting system and an ice–ocean forecasting system. This system was developed in the context of an experimental forecasting system that is now running operationally at the Canadian Centre for Meteorological and Environmental Prediction. The authors show that the most significant impact is found to be associated with a decreased cyclone intensification, with a reduction in the tropical cyclone false alarm ratio. This results in a 15% decrease in standard deviation errors in geopotential height fields for 120-h forecasts in areas of active cyclone development, with commensurate benefits for wind, temperature, and humidity fields. Whereas impacts on surface fields are found locally in the vicinity of cyclone activity, large-scale improvements in the mid-to-upper troposphere are found with positive global implications for forecast skill. Moreover, coupling is found to produce fairly constant reductions in standard deviation error growth for forecast days 1–7 of about 5% over the northern extratropics in July and August and 15% over the tropics in January and February. To the authors’ knowledge, this is the first time a statistically significant positive impact of coupling has been shown in an operational global medium-range deterministic numerical weather prediction framework.


2020 ◽  
Vol 148 (10) ◽  
pp. 3995-4008
Author(s):  
Andrea Manrique-Suñén ◽  
Nube Gonzalez-Reviriego ◽  
Verónica Torralba ◽  
Nicola Cortesi ◽  
Francisco J. Doblas-Reyes

AbstractSubseasonal predictions bridge the gap between medium-range weather forecasts and seasonal climate predictions. This time scale is crucial for operations and planning in many sectors such as energy and agriculture. For users to trust these predictions and efficiently make use of them in decision-making, the quality of predicted near-surface parameters needs to be systematically assessed. However, the method to follow in a probabilistic evaluation of subseasonal predictions is not trivial. This study aims to offer an illustration of the impact that the verification setup might have on the calculation of the skill scores, thus providing some guidelines for subseasonal forecast evaluation. For this, several forecast verification setups to calculate the fair ranked probability skill score for tercile categories have been designed. These setups use different number of samples to compute the fair RPSS as well as different ways to define the climatology, characterized by different time periods to average (week or month). These setups have been tested by evaluating 2-m temperature in ECMWF-Ext-ENS 20-yr hindcasts for all of the initializations in 2016 against the ERA-Interim reanalysis. Then, the implications on skill score values of each of the setups are analyzed. Results show that to obtain a robust skill score several start dates need to be employed. It is also shown that a constant monthly climatology over each calendar month may introduce spurious skill score associated with the seasonal cycle. A weekly climatology bears similar results to a monthly running-window climatology; however, the latter provides a better reference climatology when bias adjustment is applied.


2012 ◽  
Vol 69 (2) ◽  
pp. 675-694 ◽  
Author(s):  
Simon T. K. Lang ◽  
Sarah C. Jones ◽  
Martin Leutbecher ◽  
Melinda S. Peng ◽  
Carolyn A. Reynolds

Abstract The sensitivity of singular vectors (SVs) associated with Hurricane Helene (2006) to resolution and diabatic processes is investigated. Furthermore, the dynamics of their growth are analyzed. The SVs are calculated using the tangent linear and adjoint model of the integrated forecasting system (IFS) of the European Centre for Medium-Range Weather Forecasts with a spatial resolution up to TL255 (~80 km) and 48-h optimization time. The TL255 moist (diabatic) SVs possess a three-dimensional spiral structure with significant horizontal and vertical upshear tilt within the tropical cyclone (TC). Also, their amplitude is larger than that of dry and lower-resolution SVs closer to the center of Helene. Both higher resolution and diabatic processes result in stronger growth being associated with the TC compared to other flow features. The growth of the SVs in the vicinity of Helene is associated with baroclinic and barotropic mechanisms. The combined effect of higher resolution and diabatic processes leads to significant differences of the SV structure and growth dynamics within the core and in the vicinity of the TC. If used to initialize ensemble forecasts with the IFS, the higher-resolution moist SVs cause larger spread of the wind speed, track, and intensity of Helene than their lower-resolution or dry counterparts. They affect the outflow of the TC more strongly, resulting in a larger downstream impact during recurvature. Increasing the resolution or including diabatic effects degrades the linearity of the SVs. While the impact of diabatic effects on the linearity is small at low resolution, it becomes large at high resolution.


1991 ◽  
Vol 02 (01) ◽  
pp. 158-186 ◽  
Author(s):  
A.J. SIMMONS ◽  
D. DENT

A general introduction to numerical weather prediction is given. The development of the operational forecasting system of the European Centre for Medium-Range Weather Forecasts is summarized, and some results are presented illustrating sensitivity to the horizontal resolution of the atmospheric model, the factor which is most significant in determining computational needs. The spectral method used for the horizontal discretization is described, and computational aspects of its implementation on CRAY-1 and CRAY X-MP machines are discussed. The organization of the multi-tasking employed in the model is presented, and performance figures are given. There is a brief concluding discussion of some likely future developments in medium-range weather prediction.


2019 ◽  
Author(s):  
Alessio Bozzo ◽  
Angela Benedetti ◽  
Johannes Flemming ◽  
Zak Kipling ◽  
Samuel Rémy

Abstract. An aerosol climatology to represent aerosols in the radiation schemes of Global Atmospheric Models was recently developed. We derived the climatology from a reanalysis of atmospheric composition produced by the Copernicus Atmosphere Monitoring Service (CAMS). As an example of application into a global atmospheric model, we discuss the technical aspects of the implementation in the Integrated Forecasting System of European Centre for Medium Range Weather Forecasts (ECMWF-IFS) and the impact of the new climatology on the medium-range weather forecasts and one-year simulations. The new aerosol climatology was derived by combining a set of model simulation with constrained meteorological conditions and an atmospheric composition reanalysis for the period 2003–2014 produced by the IFS. The aerosol fields of the re-analysis are constrained by assimilating Aerosol optical thickness (AOT) retrievals product by the MODIS instruments. In a further step, we used modelled aerosol fields to correct the aerosol speciation and the vertical profiles of the aerosol reanalysis fields. The new climatology provides the monthly-mean mass mixing ratio of five aerosol species constrained by assimilated MODIS AOT. Using the new climatology in the ECMWF-IFS leads to changes in direct aerosol radiative effect compared to the climatology previously implemented, which have a small, but non-negligible impact on the forecast skill of large-scale weather patterns in the medium-range. However, details of the regional distribution of aerosol radiative forcing can have a large local impact. This is the case for the area of the Arabian Peninsula and the northern Indian Ocean. Here changes in the radiative forcing of the mineral dust significantly improve the Summer Monsoon circulation.


2019 ◽  
Vol 12 (11) ◽  
pp. 4627-4659 ◽  
Author(s):  
Samuel Rémy ◽  
Zak Kipling ◽  
Johannes Flemming ◽  
Olivier Boucher ◽  
Pierre Nabat ◽  
...  

Abstract. This article describes the IFS-AER aerosol module used operationally in the Integrated Forecasting System (IFS) cycle 45R1, operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) in the framework of the Copernicus Atmospheric Monitoring Services (CAMS). We describe the different parameterizations for aerosol sources, sinks, and its chemical production in IFS-AER, as well as how the aerosols are integrated in the larger atmospheric composition forecasting system. The focus is on the entire 45R1 code base, including some components that are not used operationally, in which case this will be clearly specified. This paper is an update to the Morcrette et al. (2009) article that described aerosol forecasts at the ECMWF using cycle 32R2 of the IFS. Between cycles 32R2 and 45R1, a number of source and sink processes have been reviewed and/or added, notably increasing the complexity of IFS-AER. A greater integration with the tropospheric chemistry scheme of the IFS has been achieved for the sulfur cycle and for nitrate production. Two new species, nitrate and ammonium, have also been included in the forecasting system. Global budgets and aerosol optical depth (AOD) fields are shown, as is an evaluation of the simulated particulate matter (PM) and AOD against observations, showing an increase in skill from cycle 40R2, used in the CAMS interim ReAnalysis (CAMSiRA), to cycle 45R1.


2019 ◽  
Vol 100 (3) ◽  
pp. 445-458 ◽  
Author(s):  
L. Magnusson ◽  
J.-R. Bidlot ◽  
M. Bonavita ◽  
A. R. Brown ◽  
P. A. Browne ◽  
...  

AbstractTropical cyclones are some of the most devastating natural hazards and the “three beasts”—Harvey, Irma, and Maria—during the Atlantic hurricane season 2017 are recent examples. The European Centre for Medium-Range Weather Forecasts (ECMWF) is working on fulfilling its 2016–25 strategy in which early warnings for extreme events will be made possible by a high-resolution Earth system ensemble forecasting system. Several verification reports acknowledge deterministic and probabilistic tropical cyclone tracks from ECMWF as world leading. However, producing reliable intensity forecasts is still a difficult task for the ECMWF global forecasting model, especially regarding maximum wind speed. This article will put the ECMWF strategy into a tropical cyclone perspective and highlight some key research activities, using Harvey, Irma, and Maria as examples. We describe the observation usage around tropical cyclones in data assimilation and give examples of their impact. From a model perspective, we show the impact of running at 5-km resolution and also the impact of applying ocean coupling. Finally, we discuss the future challenges to tackle the errors in intensity forecasts for tropical cyclones.


Sign in / Sign up

Export Citation Format

Share Document