scholarly journals Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets

Author(s):  
Zhaohua Wu ◽  
Jiaxin Feng ◽  
Fangli Qiao ◽  
Zhe-Min Tan

In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal–spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders.

2021 ◽  
Author(s):  
Chun-Hsiang Tang ◽  
Christina W. Tsai

<p>Abstract</p><p>Most of the time series in nature are nonlinear and nonstationary affected by climate change particularly. It is inevitable that Taiwan has also experienced frequent drought events in recent years. However, drought events are natural disasters with no clear warnings and their influences are cumulative. The difficulty of detecting and analyzing the drought phenomenon remains. To deal with the above-mentioned problem, Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD) is introduced to analyze the temperature and rainfall data from 1975~2018 in this study, which is a powerful method developed for the time-frequency analysis of nonlinear, nonstationary time series. This method can not only analyze the spatial locality and temporal locality of signals but also decompose the multiple-dimensional time series into several Intrinsic Mode Functions (IMFs). By the set of IMFs, the meaningful instantaneous frequency and the trend of the signals can be observed. Considering stochastic and deterministic influences, to enhance the accuracy this study also reconstruct IMFs into two components, stochastic and deterministic, by the coefficient of auto-correlation.</p><p>In this study, the influences of temperature and precipitation on the drought events will be discussed. Furthermore, to decrease the significant impact of drought events, this study also attempts to forecast the occurrences of drought events in the short-term via the Artificial Neural Network technique. And, based on the CMIP5 model, this study also investigates the trend and variability of drought events and warming in different climatic scenarios.</p><p> </p><p>Keywords: Multi-dimensional Ensemble Empirical Mode Decomposition (MEEMD), Intrinsic Mode Function(IMF), Drought</p>


2019 ◽  
Vol 11 (3) ◽  
pp. 865-876 ◽  
Author(s):  
Xianqi Zhang ◽  
Wei Tuo ◽  
Chao Song

Abstract The prediction of annual runoff in the Lower Yellow River can provide an important theoretical basis for effective reservoir management, flood control and disaster reduction, river and beach management, rational utilization of regional water and sediment resources. To solve this problem and improve the prediction accuracy, permutation entropy (PE) was used to extract the pseudo-components of modified ensemble empirical mode decomposition (MEEMD) to decompose time series to reduce the non-stationarity of time series. However, the pseudo-component was disordered and difficult to predict, therefore, the pseudo-component was decomposed by ensemble empirical mode decomposition (EEMD). Then, intrinsic mode functions (IMFs) and trend were predicted by autoregressive integrated moving average (ARIMA) which has strong ability of approximation to stationary series. A new coupling model based on MEEMD-ARIMA was constructed and applied to runoff prediction in the Lower Yellow River. The results showed that the model had higher accuracy and was superior to the CEEMD-ARIMA model or EEMD-ARIMA model. Therefore, it can provide a new idea and method for annual runoff prediction.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1882 ◽  
Author(s):  
Taiyong Li ◽  
Zhenda Hu ◽  
Yanchi Jia ◽  
Jiang Wu ◽  
Yingrui Zhou

Crude oil is one of the most important types of energy and its prices have a great impact on the global economy. Therefore, forecasting crude oil prices accurately is an essential task for investors, governments, enterprises and even researchers. However, due to the extreme nonlinearity and nonstationarity of crude oil prices, it is a challenging task for the traditional methodologies of time series forecasting to handle it. To address this issue, in this paper, we propose a novel approach that incorporates ensemble empirical mode decomposition (EEMD), sparse Bayesian learning (SBL), and addition, namely EEMD-SBL-ADD, for forecasting crude oil prices, following the “decomposition and ensemble” framework that is widely used in time series analysis. Specifically, EEMD is first used to decompose the raw crude oil price data into components, including several intrinsic mode functions (IMFs) and one residue. Then, we apply SBL to build an individual forecasting model for each component. Finally, the individual forecasting results are aggregated as the final forecasting price by simple addition. To validate the performance of the proposed EEMD-SBL-ADD, we use the publicly-available West Texas Intermediate (WTI) and Brent crude oil spot prices as experimental data. The experimental results demonstrate that the EEMD-SBL-ADD outperforms some state-of-the-art forecasting methodologies in terms of several evaluation criteria such as the mean absolute percent error (MAPE), the root mean squared error (RMSE), the directional statistic (Dstat), the Diebold–Mariano (DM) test, the model confidence set (MCS) test and running time, indicating that the proposed EEMD-SBL-ADD is promising for forecasting crude oil prices.


MAUSAM ◽  
2021 ◽  
Vol 67 (2) ◽  
pp. 423-430
Author(s):  
K. BOODHOO ◽  
M. R. LOLLCHUND ◽  
A. F. DILMAHAMOD

In this paper, we propose the use of the Ensemble Empirical Mode Decomposition (EEMD) method in the analysis of trends in climate data. As compared to existing traditional methods, EEMD is simple, fast and reliable. It works by decomposing the time-series data into intrinsic mode functions until a residual component is obtained which represents the trend in the data. The dataset considered consists of satellite precipitation estimates (SPE) obtained from the Tropical Rainfall Measuring Mission (TRMM) for the tropical South-West Indian Ocean (SWIO) basin recorded during the periods January 1998 to December 2013. The SWIO basin spans from the latitudes 5° S to 35° S and the longitudes 30° E to 70° E and comprises of part of the east coast of Africa and some small island developing states (SIDS) such as Comoros, Madagascar, Mauritius and Reunion Island. The EEMD analysis is carried out for summer, winter and yearly time series of the SPE data. The results from the study are presented in terms of intrinsic mode functions (IMFs) and the trends. The analysis reveals that in summer, there is a tendency to have an increase in the amount of rainfall, whereas in winter, from 1998 to 2004 there has been an initial increase of 0.0022 mm/hr/year and from there onwards till 2013 a decrease of 0.00052 mm/hr/year was noted.  


2020 ◽  
Vol 143 (5) ◽  
Author(s):  
Weifei Hu ◽  
Yihan He ◽  
Zhenyu Liu ◽  
Jianrong Tan ◽  
Ming Yang ◽  
...  

Abstract Precise time series prediction serves as an important role in constructing a digital twin (DT). The various internal and external interferences result in highly nonlinear and stochastic time series. Although artificial neural networks (ANNs) are often used to forecast time series because of their strong self-learning and nonlinear fitting capabilities, it is a challenging and time-consuming task to obtain the optimal ANN architecture. This paper proposes a hybrid time series prediction model based on an ensemble empirical mode decomposition (EEMD), long short-term memory (LSTM) neural networks, and Bayesian optimization (BO). To improve the predictability of stochastic and nonstationary time series, the EEMD method is implemented to decompose the original time series into several components (each component is a single-frequency and stationary signal) and a residual signal. The decomposed signals are used to train the neural networks, in which the hyperparameters are fine-tuned by the BO algorithm. The following time series data are predicted by summating all the predictions of the decomposed signals based on the trained neural networks. To evaluate the performance of the proposed EEMD-BO-LSTM neural networks, this paper conducts two case studies (the wind speed prediction and the wave height prediction) and implements a comprehensive comparison between the proposed method and other approaches including the persistence model, autoregressive integrated moving average (ARIMA) model, LSTM neural networks, BO-LSTM neural networks, and EEMD-LSTM neural networks. The results show an improved prediction accuracy using the proposed method by multiple accuracy metrics.


Author(s):  
Weifei Hu ◽  
Yihan He ◽  
Zhenyu Liu ◽  
Jianrong Tan ◽  
Ming Yang ◽  
...  

Abstract Precise time series prediction serves as an important role in constructing a Digital Twin (DT). The various internal and external interferences result in highly non-linear and stochastic time series data sampled from real situations. Although artificial Neural Networks (ANNs) are often used to forecast time series for their strong self-learning and nonlinear fitting capabilities, it is a challenging and time-consuming task to obtain the optimal ANN architecture. This paper proposes a hybrid time series prediction model based on ensemble empirical mode decomposition (EEMD), long short-term memory (LSTM) neural networks, and Bayesian optimization (BO). To improve the predictability of stochastic and nonstationary time series, the EEMD method is implemented to decompose the original time series into several components, each of which is composed of single-frequency and stationary signal, and a residual signal. The decomposed signals are used to train the BO-LSTM neural networks, in which the hyper-parameters of the LSTM neural networks are fine-tuned by the BO algorithm. The following time series data are predicted by summating all the predictions of the decomposed signals based on the trained neural networks. To evaluate the performance of the proposed hybrid method (EEMD-BO-LSTM), this paper conducts a case study of wind speed time series prediction and has a comprehensive comparison between the proposed method and other approaches including the persistence model, ARIMA, LSTM neural networks, B0-LSTM neural networks, and EEMD-LSTM neural networks. Results show an improved prediction accuracy using the EEMD-BO-LSTM method by multiple accuracy metrics.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 893
Author(s):  
Yanan Guo ◽  
Xiaoqun Cao ◽  
Bainian Liu ◽  
Kecheng Peng

El Niño is an important quasi-cyclical climate phenomenon that can have a significant impact on ecosystems and societies. Due to the chaotic nature of the atmosphere and ocean systems, traditional methods (such as statistical methods) are difficult to provide accurate El Niño index predictions. The latest research shows that Ensemble Empirical Mode Decomposition (EEMD) is suitable for analyzing non-linear and non-stationary signal sequences, Convolutional Neural Network (CNN) is good at local feature extraction, and Recurrent Neural Network (RNN) can capture the overall information of the sequence. As a special RNN, Long Short-Term Memory (LSTM) has significant advantages in processing and predicting long, complex time series. In this paper, to predict the El Niño index more accurately, we propose a new hybrid neural network model, EEMD-CNN-LSTM, which combines EEMD, CNN, and LSTM. In this hybrid model, the original El Niño index sequence is first decomposed into several Intrinsic Mode Functions (IMFs) using the EEMD method. Next, we filter the IMFs by setting a threshold, and we use the filtered IMFs to reconstruct the new El Niño data. The reconstructed time series then serves as input data for CNN and LSTM. The above data preprocessing method, which first decomposes the time series and then reconstructs the time series, uses the idea of symmetry. With this symmetric operation, we extract valid information about the time series and then make predictions based on the reconstructed time series. To evaluate the performance of the EEMD-CNN-LSTM model, the proposed model is compared with four methods including the traditional statistical model, machine learning model, and other deep neural network models. The experimental results show that the prediction results of EEMD-CNN-LSTM are not only more accurate but also more stable and reliable than the general neural network model.


Sign in / Sign up

Export Citation Format

Share Document