scholarly journals Constraints on the onset duration of the Paleocene–Eocene Thermal Maximum

Author(s):  
Sandra Kirtland Turner

The Paleocene–Eocene Thermal Maximum (PETM, approx. 56 Ma) provides a test case for investigating how the Earth system responds to rapid greenhouse gas-driven warming. However, current rates of carbon emissions are approximately 10 Pg C yr −1 , whereas those proposed for the PETM span orders of magnitude—from ≪1 Pg C yr −1 to greater than the anthropogenic rate. Emissions rate estimates for the PETM are hampered by uncertainty over the total mass of PETM carbon released as well as the PETM onset duration. Here, I review constraints on the onset duration of the carbon isotope excursion (CIE) that is characteristic of the event with a focus on carbon cycle model-based attempts that forgo the need for a traditional sedimentary age model. I also review and compare existing PETM carbon input scenarios employing the Earth system model cGENIE and suggest another possibility—that abrupt input of an isotopically depleted carbon source combined with elevated volcanic outgassing over a longer interval can together account for key features of the PETM CIE. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.

2020 ◽  
Vol 13 (7) ◽  
pp. 3383-3438 ◽  
Author(s):  
Veronika Eyring ◽  
Lisa Bock ◽  
Axel Lauer ◽  
Mattia Righi ◽  
Manuel Schlund ◽  
...  

Abstract. The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility. It consists of (1) an easy-to-install, well-documented Python package providing the core functionalities (ESMValCore) that performs common preprocessing operations and (2) a diagnostic part that includes tailored diagnostics and performance metrics for specific scientific applications. Here we describe large-scale diagnostics of the second major release of the tool that supports the evaluation of ESMs participating in CMIP Phase 6 (CMIP6). ESMValTool v2.0 includes a large collection of diagnostics and performance metrics for atmospheric, oceanic, and terrestrial variables for the mean state, trends, and variability. ESMValTool v2.0 also successfully reproduces figures from the evaluation and projections chapters of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) and incorporates updates from targeted analysis packages, such as the NCAR Climate Variability Diagnostics Package for the evaluation of modes of variability, the Thermodynamic Diagnostic Tool (TheDiaTo) to evaluate the energetics of the climate system, as well as parts of AutoAssess that contains a mix of top–down performance metrics. The tool has been fully integrated into the Earth System Grid Federation (ESGF) infrastructure at the Deutsches Klimarechenzentrum (DKRZ) to provide evaluation results from CMIP6 model simulations shortly after the output is published to the CMIP archive. A result browser has been implemented that enables advanced monitoring of the evaluation results by a broad user community at much faster timescales than what was possible in CMIP5.


2021 ◽  
Author(s):  
Ralf Döscher ◽  
Mario Acosta ◽  
Andrea Alessandri ◽  
Peter Anthoni ◽  
Almut Arneth ◽  
...  

Abstract. The Earth System Model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different HPC systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behaviour and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.


2009 ◽  
Vol 34 (1) ◽  
pp. 151-151
Author(s):  
Marisa Montoya ◽  
Alexa Griesel ◽  
Anders Levermann ◽  
Juliette Mignot ◽  
Matthias Hofmann ◽  
...  

2021 ◽  
Author(s):  
Bouwe Andela ◽  
Fakhereh Alidoost ◽  
Lukas Brunner ◽  
Jaro Camphuijsen ◽  
Bas Crezee ◽  
...  

<p>The Earth System Model Evaluation Tool (ESMValTool) is a free and open-source community diagnostic and performance metrics tool for the evaluation of Earth system models such as those participating in the Coupled Model Intercomparison Project (CMIP). Version 2 of the tool (Righi et al. 2020, www.esmvaltool.org) features a brand new design composed of a core that finds and processes data according to a ‘recipe’ and an extensive collection of ready-to-use recipes and associated diagnostic codes for reproducing results from published papers. Development and discussion of the tool (mostly) takes place in public on https://github.com/esmvalgroup and anyone with an interest in climate model evaluation is welcome to join there.</p><p> </p><p>Since the initial release of version 2 in the summer of 2020, many improvements have been made to the tool. It is now more user friendly with extensive documentation available on docs.esmvaltool.org and a step by step online tutorial. Regular releases, currently planned three times a year, ensure that recent contributions become available quickly while still ensuring a high level of quality control. The tool can be installed from conda, but portable docker and singularity containers are also available.</p><p> </p><p>Recent new features include a more user-friendly command-line interface, citation information per figure including CMIP6 data citation using ES-DOC, more and faster preprocessor functions that require less memory, automatic corrections for a larger number of CMIP6 datasets, support for more observational and reanalysis datasets, and more recipes and diagnostics.</p><p> </p><p>The tool is now also more reliable, with improved automated testing through more unit tests for the core, as well as a recipe testing service running at DKRZ for testing the scientific recipes and diagnostics that are bundled into the tool. The community maintaining and developing the tool is growing, making the project less dependent on individual contributors. There are now technical and scientific review teams that review new contributions for technical quality and scientific correctness and relevance respectively, two new principal investigators for generating a larger support base in the community, and a newly created user engagement team that is taking care of improving the overall user experience.</p>


2017 ◽  
Vol 10 (1) ◽  
pp. 271-319 ◽  
Author(s):  
Thomas Gasser ◽  
Philippe Ciais ◽  
Olivier Boucher ◽  
Yann Quilcaille ◽  
Maxime Tortora ◽  
...  

Abstract. This paper provides a comprehensive description of OSCAR v2.2, a simple Earth system model. The general philosophy of development is first explained, followed by a complete description of the model's drivers and various modules. All components of the Earth system necessary to simulate future climate change are represented in the model: the oceanic and terrestrial carbon cycles – including a book-keeping module to endogenously estimate land-use change emissions – so as to simulate the change in atmospheric carbon dioxide; the tropospheric chemistry and the natural wetlands, to simulate that of methane; the stratospheric chemistry, for nitrous oxide; 37 halogenated compounds; changing tropospheric and stratospheric ozone; the direct and indirect effects of aerosols; changes in surface albedo caused by black carbon deposition on snow and land-cover change; and the global and regional response of climate – in terms of temperature and precipitation – to all these climate forcers. Following the probabilistic framework of the model, an ensemble of simulations is made over the historical period (1750–2010). We show that the model performs well in reproducing observed past changes in the Earth system such as increased atmospheric concentration of greenhouse gases or increased global mean surface temperature.


2010 ◽  
Vol 3 (1) ◽  
pp. 123-141 ◽  
Author(s):  
J. F. Tjiputra ◽  
K. Assmann ◽  
M. Bentsen ◽  
I. Bethke ◽  
O. H. Otterå ◽  
...  

Abstract. We developed a complex Earth system model by coupling terrestrial and oceanic carbon cycle components into the Bergen Climate Model. For this study, we have generated two model simulations (one with climate change inclusions and the other without) to study the large scale climate and carbon cycle variability as well as its feedback for the period 1850–2100. The simulations are performed based on historical and future IPCC CO2 emission scenarios. Globally, a pronounced positive climate-carbon cycle feedback is simulated by the terrestrial carbon cycle model, but smaller signals are shown by the oceanic counterpart. Over land, the regional climate-carbon cycle feedback is highlighted by increased soil respiration, which exceeds the enhanced production due to the atmospheric CO2 fertilization effect, in the equatorial and northern hemisphere mid-latitude regions. For the ocean, our analysis indicates that there are substantial temporal and spatial variations in climate impact on the air-sea CO2 fluxes. This implies feedback mechanisms act inhomogeneously in different ocean regions. In the North Atlantic subpolar gyre, the simulated future cooling of SST improves the CO2 gas solubility in seawater and, hence, reduces the strength of positive climate carbon cycle feedback in this region. In most ocean regions, the changes in the Revelle factor is dominated by changes in surface pCO2, and not by the warming of SST. Therefore, the solubility-associated positive feedback is more prominent than the buffer capacity feedback. In our climate change simulation, the retreat of Southern Ocean sea ice due to melting allows an additional ~20 Pg C uptake as compared to the simulation without climate change.


2015 ◽  
Vol 17 (6) ◽  
pp. 35-42
Author(s):  
Andre R. Goncalves ◽  
Fernando J. Von Zuben ◽  
Arindam Banerjee

2017 ◽  
Author(s):  
Steven J. Lade ◽  
Jonathan F. Donges ◽  
Ingo Fetzer ◽  
John M. Anderies ◽  
Christian Beer ◽  
...  

Abstract. Changes to climate-carbon cycle feedbacks may significantly affect the Earth System’s response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth System Models (ESMs). Here, we construct a stylized global climate-carbon cycle model, test its output against complex ESMs, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon-cycle feedbacks and the operation of the carbon cycle. We use our results to analytically study the relative strengths of different climate-carbon cycle feedbacks and how they may change in the future, as well as to compare different feedback formalisms. Simple models such as that developed here also provide workbenches for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the Planetary Boundaries, that are currently too uncertain to be included in complex ESMs.


2016 ◽  
Author(s):  
Thomas Gasser ◽  
Philippe Ciais ◽  
Olivier Boucher ◽  
Yann Quilcaille ◽  
Maxime Tortora ◽  
...  

Abstract. This paper provides a comprehensive description of OSCAR v2.2, a simple Earth system model. The general philosophy of development is first explained, it is then followed by a complete description of the model's drivers and various modules. All components of the Earth system necessary to simulate future climate change are represented in the model: the oceanic and terrestrial carbon-cycles – including a book-keeping module to endogenously estimate land-use change emissions – so as to simulate the change in atmospheric carbon dioxide; the tropospheric OH chemistry and the natural wetlands, to simulate that of methane; the stratospheric chemistry, for nitrous oxide; thirty-seven halogenated compounds; changing tropospheric and stratospheric ozone; the direct and indirect effects of aerosols; changes in surface albedo caused by black carbon deposition on snow and land-cover change; and the global and regional response of climate – in terms of temperatures and precipitations – to all these climate forcers. Following the probabilistic framework of the model, an ensemble of simulations is made over the historical period (1750–2010). We show that the model performs well in reproducing observed past changes in the Earth system such as increased atmospheric concentration of greenhouse gases or increased global mean surface temperature.


Sign in / Sign up

Export Citation Format

Share Document