scholarly journals Development of mirror coatings for gravitational-wave detectors

Author(s):  
J. Steinlechner

Gravitational waves are detected by measuring length changes between mirrors in the arms of kilometre-long Michelson interferometers. Brownian thermal noise arising from thermal vibrations of the mirrors can limit the sensitivity to distance changes between the mirrors, and, therefore, the ability to measure gravitational-wave signals. Thermal noise arising from the highly reflective mirror coatings will limit the sensitivity both of current detectors (when they reach design performance) and of planned future detectors. Therefore, the development of coatings with low thermal noise, which at the same time meet strict optical requirements, is of great importance. This article gives an overview of the current status of coatings and of the different approaches for coating improvement. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.

2006 ◽  
Vol 45 (7) ◽  
pp. 1569 ◽  
Author(s):  
Gregory M. Harry ◽  
Helena Armandula ◽  
Eric Black ◽  
D. R. M. Crooks ◽  
Gianpietro Cagnoli ◽  
...  

Author(s):  
Anna-Maria A. van Veggel

At the commencement of a new era in astrophysics, with added information from direct detections of gravitational-wave (GW) signals, this paper is a testament to the quasi-monolithic suspensions of the test masses of the GW detectors that have enabled the opening of a new window on the universe. The quasi-monolithic suspensions are the final stages in the seismic isolation of the test masses in GW detectors, and are specifically designed to introduce as little thermal noise as possible. The history of the development of the fused-silica quasi-monolithic suspensions, which have been so essential for the first detections of GWs, is outlined and a glimpse into the status of research towards quasi-monolithic suspensions made of sapphire and silicon is given. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.


2010 ◽  
Vol 43 (2) ◽  
pp. 593-622 ◽  
Author(s):  
Ronny Nawrodt ◽  
Sheila Rowan ◽  
Jim Hough ◽  
Michele Punturo ◽  
Fulvio Ricci ◽  
...  

2019 ◽  
Vol 209 ◽  
pp. 01045
Author(s):  
Fulvio Ricci

We review the present status of the Gravitational wave detectors on the Earth, focusing the attention on the present innovations and the longer term perspectives to improve their sensitivity. Then we conclude mentioning few potential searches of new Physics phenomena to be performed with these detectors and those of the third generation.


2000 ◽  
Vol 09 (03) ◽  
pp. 293-297 ◽  
Author(s):  
D. BUSKULIC ◽  
L. DEROME ◽  
R. FLAMINIO ◽  
F. MARION ◽  
L. MASSONET ◽  
...  

A new generation of large scale and complex Gravitational Wave detectors is building up. They will produce big amount of data and will require intensive and specific interactive/batch data analysis. We will present VEGA, a framework for such data analysis, based on ROOT. VEGA uses the Frame format defined as standard by GW groups around the world. Furthermore, new tools are developed in order to facilitate data access and manipulation, as well as interface with existing algorithms. VEGA is currently evaluated by the VIRGO experiment.


2011 ◽  
Vol 20 (10) ◽  
pp. 2081-2086
Author(s):  
BALA R IYER

Over the last decade gravitational waveforms of binary black holes have been investigated using a variety of approaches like the Multipolar post-Minkowskian formalism, Numerical Relativity and the Effective-One-Body method. We review these complementary approaches and summarize the current status of these investigations of relevance to construct the best templates for the next generation Advanced gravitational wave detectors.


Sign in / Sign up

Export Citation Format

Share Document