scholarly journals The European roadmap towards fusion electricity

Author(s):  
A. J. H. Donné

The European roadmap to the realization of fusion electricity breaks the quest into eight missions. For each mission, it reviews the current status of research, identifies open issues, and proposes a research and development programme. ITER is the key facility on the roadmap as it is expected to achieve most of the important milestones on the path to fusion power. The Fusion Roadmap is tightly connected to the ITER schedule and the vast majority of resources in fusion research are presently dedicated to ITER and its accompanying experiments. Parallel to the ITER exploitation in the 2030s, the construction of the demonstration power plant DEMO needs to be prepared. DEMO will for the first time supply fusion electricity to the grid and it will have a self-sufficient fuel cycle. The design, construction and operation of DEMO require full involvement of industry to ensure that, after a successful DEMO operation, industry can take responsibility for commercial fusion power. The European fusion roadmap provides a coherent path towards the fusion power plant, and it proposes in an integrated way to find solutions for all challenges that still need to be addressed. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’

2021 ◽  
Author(s):  
Hoseon Choi ◽  
Seung Gyu Hyun

<p>According to strict criteria step by step for site selection, design, construction and operation, the seismic safety of nuclear power plant (NPP) sites in South Korea are secured by considering design basis earthquake (DBE) level capable of withstanding the maximum ground motions that can occur on the site. Therefore, it is intended to summarize DBE level and its evaluation details for NPP sites in several countries.</p><p>Similar but different terms are used for DBE from country to country, i.e. safe shutdown earthquake (SSE), design earthquake (DE), SL2, Ss, and maximum calculated earthquake (MCE). They may differ when applied to actual seismic design process, and only refer to approximate comparisons. This script used DBE as a representative term, and DBE level was based on horizontal values.</p><p>The DBE level of NPP sites depends on seismic activity of the area. Japan and Western United States, where earthquakes occur more frequently than South Korea, have high DBE values. The DBE level of NPP sites in South Korea has been confirmed to be similar or higher compared to that of Central and Eastern Unites Sates and Europe, which have similar seismic activity.</p>


1990 ◽  
Vol 68 (3) ◽  
pp. 216-222 ◽  
Author(s):  
V. V. Kostenko ◽  
V. I. Khvesyuk ◽  
N. V. Shabrov

Author(s):  
Stephen O. Dean

Fusion holds the promise of providing growing world energy demand with a carbon-free power source having a universally available fuel source and attractive safety and environmental characteristics. A significant global effort has been underway for over 50 years aimed at the achievement of fusion by inertial confinement. The effort to date has necessarily emphasized understanding the physics of compressing and heating a small amount of fusion fuel to the high densities and temperatures required for ignition and energy gain. Though steady progress has been and is still being made to achieve the required physics understanding and energy gain, those goals have not yet quite been met. It is timely to put progress toward fusion power by inertial confinement into perspective by developing an updated roadmap. Preparing a roadmap from present achievements to the ultimate goal of commercial fusion power requires formally identifying and implementing complementary efforts on a number of fronts. These include the choice, development and demonstration of high repetition rate compression drivers (e.g. lasers) to succeed present day single-pulse sources; design, fabrication and testing of high gain targets (gain of order 100); development of mass production, cost-effective, target fabrication and delivery systems capable of inserting targets into the reaction chamber several times per second, and demonstrating ability to accurately hit and efficiently compress those targets to reliably produce the required fusion yields; design and demonstration of reaction chambers capable of handling energy yields and target debris clearing at the levels required for achieving high power plant reliability with low induced radioactivity. A robust ongoing effort on competitive power plant conceptual design is necessary to guide the implementation of a roadmap, including the timing and level of effort on the ‘beyond ignition’ demonstrations. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 1)’.


2020 ◽  
Vol 245 ◽  
pp. 09001
Author(s):  
Andrew Davis ◽  
Aleksander Dubas ◽  
Ruben Otin

The field of fusion energy is about to enter the ITER era, for the first time we will have access to a device capable of producing 500 MW of fusion power, with plasmas lasting more than 300 seconds and with core temperatures in excess of 100-200 Million K. Engineering simulation for fusion, sits in an awkward position, a mixture of commercial and licensed tools are used, often with email driven transfer of data. In order to address the engineering simulation challenges of the future, the community must address simulation in a much more tightly coupled ecosystem, with a set of tools that can scale to take advantage of current petascale and upcoming exascale systems to address the design challenges of the ITER era.


2020 ◽  
Vol 246 ◽  
pp. 00013
Author(s):  
Francesco Romanelli

This paper presents an overview of the main challenges that fusion research is facing on the road to a demonstration power plant. The focus is on magnetic confinement fusion. Most of the challenges are being addressed in the context of the ITER construction and exploitation. These include the demonstration of high fusion gain regimes of operation, the management of high heat and particle loads and the integration of the main technologies of a fusion power plant. In preparation of DEMO, reliable solutions for the breeding blanket and neutron resistant materials have to be developed.


Fuel ◽  
1994 ◽  
Vol 73 (7) ◽  
pp. 1151-1158 ◽  
Author(s):  
P RIEMER ◽  
I WEBSTER ◽  
W ORMEROD ◽  
H AUDUS

Crisis ◽  
2016 ◽  
Vol 37 (2) ◽  
pp. 130-139 ◽  
Author(s):  
Danica W. Y. Liu ◽  
A. Kate Fairweather-Schmidt ◽  
Richard Burns ◽  
Rachel M. Roberts ◽  
Kaarin J. Anstey

Abstract. Background: Little is known about the role of resilience in the likelihood of suicidal ideation (SI) over time. Aims: We examined the association between resilience and SI in a young-adult cohort over 4 years. Our objectives were to determine whether resilience was associated with SI at follow-up or, conversely, whether SI was associated with lowered resilience at follow-up. Method: Participants were selected from the Personality and Total Health (PATH) Through Life Project from Canberra and Queanbeyan, Australia, aged 28–32 years at the first time point and 32–36 at the second. Multinomial, linear, and binary regression analyses explored the association between resilience and SI over two time points. Models were adjusted for suicidality risk factors. Results: While unadjusted analyses identified associations between resilience and SI, these effects were fully explained by the inclusion of other suicidality risk factors. Conclusion: Despite strong cross-sectional associations, resilience and SI appear to be unrelated in a longitudinal context, once risk/resilience factors are controlled for. As independent indicators of psychological well-being, suicidality and resilience are essential if current status is to be captured. However, the addition of other factors (e.g., support, mastery) makes this association tenuous. Consequently, resilience per se may not be protective of SI.


2009 ◽  
pp. 120-126
Author(s):  
K.V. Govindan Kutty ◽  
P.R. Vasudeva Rao ◽  
Baldev Raj

Sign in / Sign up

Export Citation Format

Share Document