scholarly journals On the fate of sinking diatoms: the transport of active buoyancy-regulating cells in the ocean

Author(s):  
J. Arrieta ◽  
R. Jeanneret ◽  
P. Roig ◽  
I. Tuval

Diatoms are one of the most abundant, diverse and ecologically relevant phytoplanktonic group, contributing enormously to global biogeochemical processes like the carbon and silica cycles. This large success has been partly attributed to the mechanical and optical properties of the silica shell (the frustule) that envelops their body. But since they lack motility it is difficult to conceive how they cope with the fast-fluctuating environment they live in and where distributions of resources are very heterogeneous and dynamical. This pinpoints an important but yet poorly understood feature of diatoms physiology: buoyancy regulation that helps them controlling their sinking speed and position in the water column. While buoyancy regulation by light and nutrients availability has been well studied, the effect of hydromechanical stress via fluid shear has been rather overlooked when considering diatoms dynamics. Here, we aim to start filling this gap by first presenting direct experimental evidences for buoyancy control in response to hydro-mechanical stress and then review recent theoretical models where simple couplings between local shear and buoyancy control always result in heterogeneous cell distributions, specific accumulation regions within complex flows and increased sedimentation times to the depths, features of direct ecological relevance. We conclude by suggesting future experiments aiming to unveil such coupling and therefore gain better understanding on the fate of these fascinating microorganisms in their natural habitat. This article is part of the theme issue ‘Stokes at 200 (part 2)’.

Author(s):  
P. K. Galenko ◽  
D. V. Alexandrov

Transport processes around phase interfaces, together with thermodynamic properties and kinetic phenomena, control the formation of dendritic patterns. Using the thermodynamic and kinetic data of phase interfaces obtained on the atomic scale, one can analyse the formation of a single dendrite and the growth of a dendritic ensemble. This is the result of recent progress in theoretical methods and computational algorithms calculated using powerful computer clusters. Great benefits can be attained from the development of micro-, meso- and macro-levels of analysis when investigating the dynamics of interfaces, interpreting experimental data and designing the macrostructure of samples. The review and research articles in this theme issue cover the spectrum of scales (from nano- to macro-length scales) in order to exhibit recently developing trends in the theoretical analysis and computational modelling of dendrite pattern formation. Atomistic modelling, the flow effect on interface dynamics, the transition from diffusion-limited to thermally controlled growth existing at a considerable driving force, two-phase (mushy) layer formation, the growth of eutectic dendrites, the formation of a secondary dendritic network due to coalescence, computational methods, including boundary integral and phase-field methods, and experimental tests for theoretical models—all these themes are highlighted in the present issue. This article is part of the theme issue ‘From atomistic interfaces to dendritic patterns’.


2018 ◽  
Vol 373 (1746) ◽  
pp. 20170004 ◽  
Author(s):  
Peter A. H. Westley ◽  
Andrew M. Berdahl ◽  
Colin J. Torney ◽  
Dora Biro

Recent advances in technology and quantitative methods have led to the emergence of a new field of study that stands to link insights of researchers from two closely related, but often disconnected disciplines: movement ecology and collective animal behaviour. To date, the field of movement ecology has focused on elucidating the internal and external drivers of animal movement and the influence of movement on broader ecological processes. Typically, tracking and/or remote sensing technology is employed to study individual animals in natural conditions. By contrast, the field of collective behaviour has quantified the significant role social interactions play in the decision-making of animals within groups and, to date, has predominantly relied on controlled laboratory-based studies and theoretical models owing to the constraints of studying interacting animals in the field. This themed issue is intended to formalize the burgeoning field of collective movement ecology which integrates research from both movement ecology and collective behaviour. In this introductory paper, we set the stage for the issue by briefly examining the approaches and current status of research in these areas. Next, we outline the structure of the theme issue and describe the obstacles collective movement researchers face, from data acquisition in the field to analysis and problems of scale, and highlight the key contributions of the assembled papers. We finish by presenting research that links individual and broad-scale ecological and evolutionary processes to collective movement, and finally relate these concepts to emerging challenges for the management and conservation of animals on the move in a world that is increasingly impacted by human activity. This article is part of the theme issue ‘Collective movement ecology’.


2015 ◽  
Vol 138 (4) ◽  
Author(s):  
Martin Sommerfeld ◽  
Silvio Schmalfuß

The efficiency of dry powder inhalers (DPIs) for drug delivery is still very low and is therefore the objective of intensive research. Thus, numerical calculations (computational fluid dynamics (CFD)) using the Euler/Lagrange approach without coupling are being performed in order to analyze flow structure and carrier particle motion within a typical inhaler device. These computations are being performed for a steady-state situation with a flow rate of 100 l/min. Essential for the detachment of the very fine drug powder (i.e., between 1 and 5 μm) from the carrier particles are the fluid stresses experienced by such particles (i.e., relative velocity, turbulence, and fluid shear) as well as wall collisions, which are both evaluated in the present study. Since the carrier particles are rather large (i.e., normally 50–100 μm), first the importance of different relevant fluid forces, especially transverse lift forces, is investigated. Moreover, the significance of the parameters in the particle–wall collision model is highlighted and a statistical analysis of particle–wall collisions in an inhaler is conducted. The improved understanding of particle motion in the normally very complex flows of inhalers will be the basis for optimizing inhaler design.


2020 ◽  
Vol 375 (1813) ◽  
pp. 20200066 ◽  
Author(s):  
Andreas Sutter ◽  
Simone Immler

Sperm competition was defined by Geoff Parker 50 years ago as the competition between sperm from two or more males over the fertilization of a set of eggs. Since the publication of his seminal paper, sperm competition has developed into a large field of research, and many aspects are still being discovered. One of the relatively poorly understood aspects is the importance of selection and competition among sperm within the ejaculate of a male. The sheer number of sperm present in a male's ejaculate suggests that the competition among sibling sperm produced by the same male may be intense. In this review, we summarize Parker's theoretical models generating predictions about the evolution of sperm traits under the control of the haploid gamete as opposed to the diploid male. We review the existing evidence of within-ejaculate competition from a wide range of fields and taxa. We also discuss the conceptual and practical hurdles we have been facing to study within-ejaculate sperm competition, and how novel technologies may help in addressing some of the currently open questions. This article is part of the theme issue ‘Fifty years of sperm competition’.


Author(s):  
Héctor M. Manrique ◽  
Henriette Zeidler ◽  
Gilbert Roberts ◽  
Pat Barclay ◽  
Michael Walker ◽  
...  

Humans care about having a positive reputation, which may prompt them to help in scenarios where the return benefits are not obvious. Various game-theoretical models support the hypothesis that concern for reputation may stabilize cooperation beyond kin, pairs or small groups. However, such models are not explicit about the underlying psychological mechanisms that support reputation-based cooperation. These models therefore cannot account for the apparent rarity of reputation-based cooperation in other species. Here, we identify the cognitive mechanisms that may support reputation-based cooperation in the absence of language. We argue that a large working memory enhances the ability to delay gratification, to understand others' mental states (which allows for perspective-taking and attribution of intentions) and to create and follow norms, which are key building blocks for increasingly complex reputation-based cooperation. We review the existing evidence for the appearance of these processes during human ontogeny as well as their presence in non-human apes and other vertebrates. Based on this review, we predict that most non-human species are cognitively constrained to show only simple forms of reputation-based cooperation. This article is part of the theme issue ‘The language of cooperation: reputation and honest signalling’.


Author(s):  
L. P. Hardie ◽  
D. L. Balkwill ◽  
S. E. Stevens

Agmenellum quadruplicatum is a unicellular, non-nitrogen-fixing, marine cyanobacterium (blue-green alga). The ultrastructure of this organism, when grown in the laboratory with all necessary nutrients, has been characterized thoroughly. In contrast, little is known of its ultrastructure in the specific nutrient-limiting conditions typical of its natural habitat. Iron is one of the nutrients likely to limit this organism in such natural environments. It is also of great importance metabolically, being required for both photosynthesis and assimilation of nitrate. The purpose of this study was to assess the effects (if any) of iron limitation on the ultrastructure of A. quadruplicatum. It was part of a broader endeavor to elucidate the ultrastructure of cyanobacteria in natural systemsActively growing cells were placed in a growth medium containing 1% of its usual iron. The cultures were then sampled periodically for 10 days and prepared for thin sectioning TEM to assess the effects of iron limitation.


Author(s):  
P. S. Sklad

Over the past several years, it has become increasingly evident that materials for proposed advanced energy systems will be required to operate at high temperatures and in aggressive environments. These constraints make structural ceramics attractive materials for these systems. However it is well known that the condition of the specimen surface of ceramic materials is often critical in controlling properties such as fracture toughness, oxidation resistance, and wear resistance. Ion implantation techniques offer the potential of overcoming some of the surface related limitations.While the effects of implantation on surface sensitive properties may be measured indpendently, it is important to understand the microstructural evolution leading to these changes. Analytical electron microscopy provides a useful tool for characterizing the microstructures produced in terms of solute concentration profiles, second phase formation, lattice damage, crystallinity of the implanted layer, and annealing behavior. Such analyses allow correlations to be made with theoretical models, property measurements, and results of complimentary techniques.


2020 ◽  
Vol 63 (2) ◽  
pp. 487-498
Author(s):  
Puisan Wong ◽  
Man Wai Cheng

Purpose Theoretical models and substantial research have proposed that general auditory sensitivity is a developmental foundation for speech perception and language acquisition. Nonetheless, controversies exist about the effectiveness of general auditory training in improving speech and language skills. This research investigated the relationships among general auditory sensitivity, phonemic speech perception, and word-level speech perception via the examination of pitch and lexical tone perception in children. Method Forty-eight typically developing 4- to 6-year-old Cantonese-speaking children were tested on the discrimination of the pitch patterns of lexical tones in synthetic stimuli, discrimination of naturally produced lexical tones, and identification of lexical tone in familiar words. Results The findings revealed that accurate lexical tone discrimination and identification did not necessarily entail the accurate discrimination of nonlinguistic stimuli that followed the pitch levels and pitch shapes of lexical tones. Although pitch discrimination and tone discrimination abilities were strongly correlated, accuracy in pitch discrimination was lower than that in tone discrimination, and nonspeech pitch discrimination ability did not precede linguistic tone discrimination in the developmental trajectory. Conclusions Contradicting the theoretical models, the findings of this study suggest that general auditory sensitivity and speech perception may not be causally or hierarchically related. The finding that accuracy in pitch discrimination is lower than that in tone discrimination suggests that comparable nonlinguistic auditory perceptual ability may not be necessary for accurate speech perception and language learning. The results cast doubt on the use of nonlinguistic auditory perceptual training to improve children's speech, language, and literacy abilities.


2015 ◽  
Vol 74 (2) ◽  
pp. 91-104 ◽  
Author(s):  
Bo Wang

Emotional arousal induced after learning has been shown to modulate memory consolidation. However, it is unclear whether the effect of postlearning arousal can extend to different aspects of memory. This study examined the effect of postlearning positive arousal on both item memory and source memory. Participants learned a list of neutral words and took an immediate memory test. Then they watched a positive or a neutral videoclip and took delayed memory tests after either 25 minutes or 1 week had elapsed after the learning phase. In both delay conditions, positive arousal enhanced consolidation of item memory as measured by overall recognition. Furthermore, positive arousal enhanced consolidation of familiarity but not recollection. However, positive arousal appeared to have no effect on consolidation of source memory. These findings have implications for building theoretical models of the effect of emotional arousal on consolidation of episodic memory and for applying postlearning emotional arousal as a technique of memory intervention.


2017 ◽  
Vol 38 (1) ◽  
pp. 55-62 ◽  
Author(s):  
Jeffrey H. Kahn ◽  
Daniel W. Cox ◽  
A. Myfanwy Bakker ◽  
Julia I. O’Loughlin ◽  
Agnieszka M. Kotlarczyk

Abstract. The benefits of talking with others about unpleasant emotions have been thoroughly investigated, but individual differences in distress disclosure tendencies have not been adequately integrated within theoretical models of emotion. The purpose of this laboratory research was to determine whether distress disclosure tendencies stem from differences in emotional reactivity or differences in emotion regulation. After completing measures of distress disclosure tendencies, social desirability, and positive and negative affect, 84 participants (74% women) were video recorded while viewing a sadness-inducing film clip. Participants completed post-film measures of affect and were then interviewed about their reactions to the film; these interviews were audio recorded for later coding and computerized text analysis. Distress disclosure tendencies were not predictive of the subjective experience of emotion, but they were positively related to facial expressions of sadness and happiness. Distress disclosure tendencies also predicted judges’ ratings of the verbal disclosure of emotion during the interview, but self-reported disclosure and use of positive and negative emotion words were not associated with distress disclosure tendencies. The authors present implications of this research for integrating individual differences in distress disclosure with models of emotion.


Sign in / Sign up

Export Citation Format

Share Document