scholarly journals Semigroups for dynamical processes on metric graphs

Author(s):  
Marjeta Kramar Fijavž ◽  
Aleksandra Puchalska

We present the operator semigroups approach to the first- and second-order dynamical systems taking place on metric graphs. We briefly survey the existing results and focus on the well-posedness of the problems with standard vertex conditions. Finally, we show two applications to biological models. This article is part of the theme issue ‘Semigroup applications everywhere’.

Author(s):  
R. Chill ◽  
D. Seifert ◽  
Y. Tomilov

Only in the last 15 years or so has the notion of semi-uniform stability, which lies between exponential stability and strong stability, become part of the asymptotic theory of C 0 -semigroups. It now lies at the very heart of modern semigroup theory. After briefly reviewing the notions of exponential and strong stability, we present an overview of some of the best known (and often optimal) abstract results on semi-uniform stability. We go on to indicate briefly how these results can be applied to obtain (sometimes optimal) rates of energy decay for certain damped second-order Cauchy problems. This article is part of the theme issue ‘Semigroup applications everywhere’.


2007 ◽  
Vol 5 ◽  
pp. 195-200
Author(s):  
A.V. Zhiber ◽  
O.S. Kostrigina

In the paper it is shown that the two-dimensional dynamical system of equations is Darboux integrable if and only if its characteristic Lie algebra is finite-dimensional. The class of systems having a full set of fist and second order integrals is described.


2021 ◽  
pp. 1-1
Author(s):  
Eddie Clemente ◽  
M. C. Rodriguez-Linan ◽  
Marlen Meza-Sanchez ◽  
Luis Monay-Arredondo ◽  
Leonardo Herrera

2016 ◽  
Vol 96 (5) ◽  
pp. 799-809 ◽  
Author(s):  
Radu Ioan Boţ ◽  
Ernö Robert Csetnek

Author(s):  
Y. Meurice ◽  
R. Perry ◽  
S.-W. Tsai

The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.


Author(s):  
Kazuyuki Aihara ◽  
Hideyuki Suzuki

In this introductory article, we survey the contents of this Theme Issue. This Theme Issue deals with a fertile region of hybrid dynamical systems that are characterized by the coexistence of continuous and discrete dynamics. It is now well known that there exist many hybrid dynamical systems with discontinuities such as impact, switching, friction and sliding. The first aim of this Issue is to discuss recent developments in understanding nonlinear dynamics of hybrid dynamical systems in the two main theoretical fields of dynamical systems theory and control systems theory. A combined study of the hybrid systems dynamics in the two theoretical fields might contribute to a more comprehensive understanding of hybrid dynamical systems. In addition, mathematical modelling by hybrid dynamical systems is particularly important for understanding the nonlinear dynamics of biological and medical systems as they have many discontinuities such as threshold-triggered firing in neurons, on–off switching of gene expression by a transcription factor, division in cells and certain types of chronotherapy for prostate cancer. Hence, the second aim is to discuss recent applications of hybrid dynamical systems in biology and medicine. Thus, this Issue is not only general to serve as a survey of recent progress in hybrid systems theory but also specific to introduce interesting and stimulating applications of hybrid systems in biology and medicine. As the introduction to the topics in this Theme Issue, we provide a brief history of nonlinear dynamics and mathematical modelling, different mathematical models of hybrid dynamical systems, the relationship between dynamical systems theory and control systems theory, examples of complex behaviour in a simple neuron model and its variants, applications of hybrid dynamical systems in biology and medicine as a road map of articles in this Theme Issue and future directions of hybrid systems modelling.


Sign in / Sign up

Export Citation Format

Share Document