scholarly journals How latex film formation and adhesion at the nanoscale correlate to performance of pressure sensitive adhesives with cellulose nanocrystals

Author(s):  
Elina Niinivaara ◽  
Alexandra Ouzas ◽  
Carole Fraschini ◽  
Richard M. Berry ◽  
Marc A. Dubé ◽  
...  

Emulsion polymerized latex-based pressure-sensitive adhesives (PSAs) are more environmentally benign because they are synthesized in water but often underperform compared to their solution polymerized counterparts. Studies have shown a simultaneous improvement in the tack, and peel and shear strength of various acrylic PSAs upon the addition of cellulose nanocrystals (CNCs). This work uses atomic force microscopy (AFM) to examine the role of CNCs in (i) the coalescence of hydrophobic 2-ethyl hexyl acrylate/ n -butyl acrylate/methyl methacrylate (EHA/BA/MMA) latex films and (ii) as adhesion modifiers over multiple length scales. Thin films with varying solids content and CNC loading were prepared by spin coating. AFM revealed that CNCs lowered the solids content threshold for latex particle coalescence during film formation. This improved the cohesive strength of the films, which was directly reflected in the increased shear strength of the EHA/BA/MMA PSAs with increasing CNC loading. Colloidal probe AFM indicated that the nano-adhesion of thicker continuous latex films increased with CNC loading when measured over small contact areas where the effect of surface roughness was negligible. Conversely, the beneficial effects of the CNCs on macroscopic PSA tack and peel strength were outweighed by the effects of increased surface roughness with increasing CNC loading over larger surface areas. This highlights that CNCs can improve both cohesive and adhesive PSA properties; however, the effects are most pronounced when the CNCs interact favourably with the latex polymer and are uniformly dispersed throughout the adhesive film. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)’.

2007 ◽  
Vol 9 (2) ◽  
pp. 5-9 ◽  
Author(s):  
Roland Milker ◽  
Zbigniew Czech ◽  
Marta Wesołowska

Synthesis of photoreactive solvent-free acrylic pressure-sensitive adhesives in the recovered system The present paper discloses a novel photoreactive solvent-free acrylic pressure-sensitive adhesive (PSA) systems, especially suitable for the so much adhesive film applications as the double-sided, single-sided or carrier-free technical tapes, self-adhesive labels, protective films, marking and sign films and wide range of medical products. The novel photoreactive solvent-free pressure-sensitive adhesives contain no volatile organic compounds (residue monomers or organic solvent) and comply with the environment and legislation. The synthesis of this new type of acrylic PSA is conducted in common practice by solvent polymerisation. After the organic solvent are removed, there remains a non-volatile, solvent-free highly viscous material, which can be processed on a hot-melt coating machine at the temperatures of about 100 to 140°C.


2006 ◽  
Vol 82 (3) ◽  
pp. 217-238 ◽  
Author(s):  
J. Mallégol ◽  
G. Bennett ◽  
P. J. McDonald ◽  
J. L. Keddie ◽  
O. Dupont

2013 ◽  
Vol 15 (1) ◽  
pp. 12-14 ◽  
Author(s):  
Zbigniew Czech ◽  
Agnieszka Kowalczyk ◽  
Joanna Ortyl ◽  
Jolanta Świderska

The use of acrylic pressure-sensitive adhesives (PSAs) is increasing in a variety of industrial fields. They have been applied in the manufacture of mounting tapes, self-adhesive labels, protective films, masking tapes, splicing tapes, carrier-free tapes, sign and marking films, and in diverse medical products, such as pads or self-adhesive bioelectrodes. In this study, the application of SiO2 nanoparticles in acrylic PSA was investigated. The properties of the newly synthesized and modified PSA were evaluated via the tack, peel adhesion, shear-strength and shrinkage. It has been found that the nanotechnologically-reinforced systems consisting of monodisperse non-agglomerated SiO2 nanoparticles and self-crosslinked acrylic PSAs showed a great enhancement in tack, peel adhesion, shear resistance and shrinkage, without showing the disadvantages known to result from the use of other inorganic additives. In this paper we evaluate the performance of SiO2 nanoparticles with a size of about 30 nm as inorganic filler into the synthesized solvent-borne acrylic PSA.


2015 ◽  
Vol 754-755 ◽  
pp. 49-53 ◽  
Author(s):  
Luqman Musa ◽  
Syed Zhafer Firdaus ◽  
Kamarudin Hussin ◽  
Poh Beng Teik

Natural rubber (SMR L grade), epoxidized natural rubber (ENR) 25 and 50 were loaded with hybrid tackifiers consisting of a mixture of coumarone-indene and gum rosin. The coumarone-indene was fixed at 40 parts per hundred of rubber (phr) while the concentration of gum rosin was varied from 20 to 80 phr. The viscosity, peel and shear strength of the adhesives prepared from the elastomers was studied. Results show that peel strength exhibits a maximum value at 60 phr gum rosin for SMR L-based adhesive while for ENR 25 and ENR 50 based adhesives a maximum value is observed at 40 phr gum rosin which was attributed to the occurrence of optimum wettability and compatibility at this tackifier loading. Meanwhile, viscosity and shear strength decreases with increasing gum rosin concentration. SMR L-based adhesive consistently exhibits higher viscosity and shear strength whereas ENR 25-based adhesive steadily shows higher value for all modes of peel tests.


2008 ◽  
Vol 1086 ◽  
Author(s):  
Carmel Majidi ◽  
Ronald S Fearing

AbstractElastic rod theory and principles of contact mechanics motivate the development of a novel, shear-activated, microfiber array adhesive. Unlike with conventional Pressure Sensitive Adhesives (PSAs), the microfiber array and backing are composed entirely of a stiff, glassy polymer (polypropylene, elastic modulus E = 1 GPa) and an externally applied shear load is required to achieve contact with a substrate. Previously, results from a Shear Power Test on glass indicated a maximum interfacial shear strength of 10 kPa over 4 sq. cm, a factor of 1000 greater than with a smooth polypropylene sheet of similar thickness. Here we present a theoretical model that describes the mechanism for shear-activated adhesion and predicts a shear strength of 27 kPa, on the order of the experimental measurement.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4413
Author(s):  
Marcin Bartkowiak ◽  
Zbigniew Czech ◽  
Hyun-Joong Kim ◽  
Gyu-Seong Shim ◽  
Małgorzata Nowak ◽  
...  

The use of ultraviolet radiation (UV) technology for the crosslinking of acrylic pressure-sensitive adhesives (PSA) is the one of various crosslinking methods, being the alternative to the conventional crosslinking process of solvent-based acrylic systems. It also requires a photoinitiator to absorb the impinging UV and induce photocrosslinking. As previously mentioned, a photoinitiator is one of the important and necessary components in UV-inducted crosslinking of acrylic pressure-sensitive adhesives. The activity of multifunctional conventional saturated photoinitiators of type I and type II, especially benzophenone-based in the photoreactive UV-crosslinkable acrylic PSA was described. The effect of the multifunctional type-II photoinitiators on the acrylic PSA, such as tack, peel adhesion and shear strength were summarized.


Sign in / Sign up

Export Citation Format

Share Document