Studies in the Post-glacial history of British vegetation XIV. Late-glacial deposits at Moss Lake, Liverpool

Investigations of deposits at a built-over site near the centre of Liverpool disclose a basal stratigraphic sequence characteristic of the west-European Late-glacial period. Detailed pollen analyses confirm that the deposits extended from the Late-glacial (Zone I) to the Post-glacial thermal maximum (Zone VII a ). The lake was overgrown in Zone VI by floating sphagna , and in Zone VII a typical raised bog developed. Macroscopic remains of lake and fen plants were recovered in great abundance and together with frequent non-tree pollen these permitted a detailed reconstruction of the vegetational history of both the lake and the surrounding upland. Several species of notably disjunct or restricted present-day range have been recorded here, Cotoneaster cf. integerrima Medic., Elatine hexandra (Lapierre) D.C., Lycopodium annotinum L., Pilularia globulifera L., and Linum anglicum Mill., whilst tentative identification of species such as Agropyron junceiforme, A. & D. Löve, Gentiana campestris (L.), Lotus uliginosus Schkuhr, and Vicia sepium L. cast new light on the natural status of other British plants. Numerous further records confirm and extend our knowledge of the history of the British flora, especially in the Late-glacial and early Post-glacial periods.

The stratigraphy of sediments in two lake basins in the Caernarvonshire mountains at 600 and 900 ft. O.D. is described and it is shown that the basal layers were deposited in the Late-glacial Period. The deposits of a third site occupying a kettle-hole in morainic gravels at 1223 ft. O.D. are described and here the Late-glacial Period is not represented. The relation of these sites to the youngest corrie moraines of the district indicates that the latter were formed during the post-Allerod climatic regression (Zone III). The vegetation history of the district was studied by means of pollen analysis of lacustrine deposits from the two first-mentioned sites (above). The vegetation of the Late-glacial Period at first formed tundra (Zone I) in which arctic-alpines, notably Betula , flourished together with species of oceanic and oceanic-northern distribution and calcicolous, eutrophic and moderately thermophilous plants. The spread of juniper scrub preceded the arrival of tree birches, which form ‘park-tundra’ in Zone II at Nant Ffrancon but failed to grow as high as Llyn Dwythwch. The birch ‘ parktundra’ is considered to have covered Britain south of the Forth-Clyde at low altitudes and to have occupied central and eastern Ireland at this time. The climatic deterioration of Zone III is clearly registered by the decline of juniper and tree birch and the local severity of conditions is demonstrated by the increased abundance of the chianophilous fern, Cryptogramma crispa, Lycopodium selago, Saussurea alpina and other montane herbs. The extensive occurrence of solifluxion, augmented by glacier streams, brought down silt and clay into the lakes. The ensuing amelioration in climate and the course of forest development through the Post-glacial Period is briefly traced and the persistence of certain elements of the present mountain flora from the Late-glacial Period demonstrated. A description is given of the spores of Cryptogramma crispa which together with Lycopodium annotinum and Saussurea alpina are new to British Late-glacial records.


1958 ◽  
Vol 63 (2) ◽  
pp. 221-264 ◽  
Author(s):  
J. J. Donner

SynopsisThe last major retreat stages of the ice in Scotland have been correlated with the different periods of vegetational history as shown by pollen diagrams. The end-moraines can be divided into two stages, the first stage being the Perth Readvance Moraine, during which the ice extended outside the Highlands. The Aberdeen Readvance Moraine probably also belongs to the same stage. During the second stage, here called the Highland Readvance, valley glaciers reached to the mouths of the Highland valleys where small moraine ridges were formed.Samples from mainly lake sediments near the moraine were studied, and the pollen diagrams from them show the general vegetational history of the Late-glacial and Post-glacial periods. The same zones as in other parts of the British Isles are used in the diagrams.The geological and pollen analytical evidence suggests that the Highland Readvance Moraine was formed during the Late-glacial Zone III, and that the Perth Readvance is older than the Alleröd interstadial. The Highland Readvance can now be correlated with the moraines in Scandinavia, the Alps and North America, where they already have been dated.


A preliminary account has already been given of peat stratigraphy, pollen analysis, archaeological and climatic circumstances in the Wedmore-Polden basin of the Somerset Levels (Godwin 1941). It was there pointed out that the deep valleys between the Mendips, Poldens and Quantocks had been subject to marine transgression at the close of the Boreal period, and had thereby been filled with clay to about present sea-level. Upon this flat surface there grew up, at least in the region between the Polden Hills and the Wedmore Ridge, a complex of large ombrogenous raised bogs (figure 1). It was shown that the stratigraphic sequence in these structures exhibited a general consistency, and further investigation has confirmed this. Upon the clay surface is a layer 1 or 2 m. thick of greyblack Phragmites peat passing upwards into Cladium peat: this represents a phase of widespread reed-swamp and sedge-fen, probably brackish in its earliest stages. Succeeding this layer is a bed of wood-peat, containing abundant remains of Betula , and doubtless representing the normal transition from eutrophic fen to the oligotrophic stages of raised bog. These are represented in the main by peats derived from Sphagnum, Calluna, Eriophorum and their usual associates, and they may achieve thicknesses of as much as 3 or 4 m.


This paper describes the morphology of a small piece of the Chalk escarpment near Brook in east Kent, and reconstructs its history since the end of the Last Glaciation. The escarpment contains a number of steep-sided valleys, or coombes, with which are associated deposits of chalk debris, filling their bottoms and extending as fans over the Gault Clay plain beyond. Here the fans overlie radiocarbon-dated marsh deposits of zone II (10 000 to 8800 B.C.) of the Late-glacial Period. The debris fans were formed and the coombes were cut very largely during the succeeding zone III (8800 to 8300 B.C.). The fans are the products of frost-shattering, probably transported by a combination of niveo-fluvial action and the release of spring waters; intercalated seams of loess also occur. The molluscs and plants preserved in the Late-glacial deposits give a fairly detailed picture of local conditions. The later history of one of the coombes, the Devil’s Kneadingtrough, is reconstructed. The springs have effected virtually no erosion and have probably always emerged more or less in their present position. In the floor of the coombe the periglacial chalk rubbles of zone III are covered by Postglacial deposits, mainly hillwashes. They are oxidized and yield no pollen, but contain rich faunas of land Mollusca, which are presented in the form of histograms revealing changing local ecological and climatic conditions. During most of the Post-glacial Period, from the end of zone III until about the beginning of zone VIII, very little accumulation took place on the coombe floor. But below the springs there are marsh deposits which span much of this interval. They yield faunas of considerable zoogeographical interest. The approximate beginning of zone VII a (Atlantic Period) is reflected by a calcareous tufa, which overlies a weathering horizon, and represents an increase in spring flow. Two clearance phases are deduced from the molluscan record. The first may have taken place at least as early as the Beaker Period (Late Neolithic/earliest Bronze Age); the second is probably of Iron Age ‘A’ date. In Iron Age times the subsoil was mobilized and a phase of rapid hillwashing began. As a result the valley floor became buried by humic chalk muds. The prime cause of this process was probably the beginning of intensive arable farming on the slopes above the coombe; a possible subsidiary factor may have been the Sub-Atlantic worsening of climate. The muds yield pottery ranging in date from Iron Age ‘Kentish first A’ ( ca . 500 to ca . 300 B.C.) to Romano-British ware of the first or second centuries A.D. Evidence is put forward for a possible climatic oscillation from dry to wet taking place at about the time of Christ. In the later stages of cultivation, possibly in the Roman Era, the valley floor was ploughed and given its present-day form.


1918 ◽  
Vol 37 ◽  
pp. 327-349 ◽  
Author(s):  
B. N. Peach ◽  
J. Horne ◽  
E. T. Newton

A characteristic feature of the plateau of Cambrian Limestone in the neighbourhood of Inchnadamff is the occurrence in it of swallow-holes, caves, and subterranean channels which are intimately associated with the geological history of the region. The valley of Allt nan Uamh (Burn of the Caves), locally known as the Coldstream Burn, furnishes striking examples of these phenomena. One of the caves in this valley yielded an interesting succession of deposits, from which were collected abundant remains of mammals and birds. The discovery of bones of the Northern Lynx, the Arctic Lemming, and the Northern Vole among these relics, and the collateral evidence of the materials forming some of these layers, seem to link the early history of this bone-cave with late glacial time, or at least with a period before the final disappearance of local glaciers in that region.


2001 ◽  
Vol 38 (8) ◽  
pp. 1141-1155 ◽  
Author(s):  
G D Osborn ◽  
B J Robinson ◽  
B H Luckman

The Holocene and late glacial history of fluctuations of Stutfield Glacier are reconstructed using moraine stratigraphy, tephrochronology, and dendroglaciology. Stratigraphic sections in the lateral moraines contain tills from at least three glacier advances separated by volcanic tephras and paleosols. The oldest, pre-Mazama till is correlated with the Crowfoot Advance (dated elsewhere to be Younger Dryas equivalent). A Neoglacial till is found between the Mazama tephra and a paleosol developed on the Bridge River tephra. A log dating 2400 BP from the upper part of this till indicates that this glacier advance, correlated with the Peyto Advance, culminated shortly before deposition of the Bridge River tephra. Radiocarbon and tree-ring dates from overridden trees exposed in moraine sections indicate that the initial Cavell (Little Ice Age (LIA)) Advance overrode this paleosol and trees after A.D. 1271. Three subsequent phases of the Cavell Advance were dated by dendrochronology. The maximum glacier extent occurred in the mid-18th century, predating 1743 on the southern lateral, although ice still occupied and tilted a tree on the north lateral in 1758. Subsequent glacier advances occurred ca. 1800–1816 and in the late 19th century. The relative extent of the LIA advances at Stutfield differs from that of other major eastward flowing outlets of the Columbia Icefield, which have maxima in the mid–late 19th century. This is the first study from the Canadian Rockies to demonstrate that the large, morphologically simple, lateral moraines defining the LIA glacier limits are actually composite features, built up progressively (but discontinuously) over the Holocene and contain evidence of multiple Holocene- and Crowfoot-age glacier advances.


Biologia ◽  
2006 ◽  
Vol 61 (20) ◽  
Author(s):  
Vlasta Jankovská

AbstractPollen analysis has been carried out on a 549 cm thick sediment profile from lake Plešné jezero (Plešné Lake) in the Bohemian Forest (Šumava, Czech Republic; 1090 m a.s.l.; 48°47′ N; 13°52′ E). Analyses of 67 samples characterise the development of the lake biotope and the surrounding landscape during the last ca. 14,000 years. The pollen diagram shows a very distinct transition between the Late Glacial and the Holocene biostratigraphic units at a depth of ca. 312 cm. In the surroundings of Plešné Lake the vegetation was treeless during the entire Late Glacial. The alpine tree limit, formed by Betula and Pinus with undergrowth of shrubs, might have been at ca. 500 m a.s.l. Pollen transported from long distances was significant due to the openness of the landscape, coming from southern Europe and even Africa, and including high numbers of Artemisia, Poaceae, Chenopodiaceae, and some other herbs and shrubs from steppe and forest-steppe areas in southern Europe or Africa (likely Ephedra, certainly Lygeum spartum). The expansion of shrubs, particularly Juniperus, preceded the expansion of trees near the end of the Late Glacial. Afforestation of the region by thin stands of Betula and Pinus occurred during the Preboreal. Significant warming in the Boreal resulted in the expansion of Corylus, Quercetum mixtum (QM) trees, and probably also Picea and Alnus. Picea as well as QM trees were further expanding during the Early Atlantic. Picea was the dominant tree during the Late Atlantic and Fagus started to spread towards its end. Abrupt expansion of Abies marks the Subboreal. A high degree of afforestation (Abies, Fagus, Picea) was characteristic for the Early Subatlantic. During Late Subatlantic, pollen of synanthropic plants appears. Phases of the lake biotope development were defined on the basis of coccal green algae and Isoëtes.


Sign in / Sign up

Export Citation Format

Share Document