scholarly journals An evaluation of the potential triggers of photoinactivation of photosystem II in the context of a Stern–Volmer model for downregulation and the reversible radical pair equilibrium model

2000 ◽  
Vol 355 (1402) ◽  
pp. 1489-1498 ◽  
Author(s):  
Kevin Oxborough ◽  
Neil R. Baker

Photoinactivation of photosystem II (PS II) is a light–dependent process that frequently leads to breakdown and replacement of the D1 polypeptide. Photoinhibition occurs when the rate of photoinactivation is greater than the rate at which D1 is replaced and results in a decrease in the maximum efficiency of PS II photochemistry. Down regulation, which increases non–radiative decay within PS II, also decreases the maximum efficiency of PS II photochemistry and plays an important role in protecting against photoinhibition by reducing the yield of photoinactivation. The yield of photoinactivation has been shown to be relatively insensitive to photosynthetically active photon flux density (PPFD). Formation of the P680 radical (P680 + ), through charge separation at PS II, generation of triplet–state P680 ( 3 P680*), through intersystem crossing and charge recombination, and double reduction of the primary stable electron acceptor of PS II (the plastoquinone, Q A ) are all potentially critical steps in the triggering of photoinactivation. In this paper, these processes are assessed using fluorescence data from attached leaves of higher plant species, in the context of a Stern–Volmer model for downregulation and the reversible radical pair equilibrium model. It is shown that the yield of P680 + is very sensitive to PPFD and that downregulation has very little effect on its production. Consequently, it is unlikely to be the trigger for photoinactivation. The yields of 3 P680* generated through charge recombination or intersystem crossing are both less sensitive to PPFD than the yield of P680 + and are both decreased by downregulation. The yield of doubly reduced Q A increases with incident photon flux density at low levels, but is relatively insensitive at moderate to high levels, and is greatly decreased by downregulation. Consequently, 3 P680* and doubly reduced Q A are both viable as triggers of photoinactivation.

Author(s):  
J.A. Raven ◽  
J.E. Kübler ◽  
J. Beardall

The lowest photon flux density of photosynthetically active radiation at which O2-evolving marine photolithotrophs appear to be able to grow is some 10 nmol photon m−2 s−1, while marine non-O2-evolvers can grow at 4 nmol photon m−2 s−1, in both cases with the photon flux density averaged over the 24 hour L:D cycle. Constraints on the ability to grow at very low fluxes of photosynthetically active radiation fall into three categories. Category one includes essential processes whose efficiency is independent of the rate of energy input, but whose catalysts show phylogenetic variation leading to different energy costs for a given process in different taxa, e.g. light-harvesting complexes, RUBISCO and probably in the sensitivity of PsII to photodamage. The second category comprises essential processes whose efficiency decreases with decreasing energy input rate as a result of back-reactions independent of the energy input rate, e.g. charge recombination following charge separation by PsII and short-circuit H+ fluxes across the thylakoid membrane which decrease the fraction of pumped H+ which can be used in adenosine diphosphate phosphorylation. Category two also includes that component of protein turnover which cannot be related to replacement of polypeptides which were incorrectly assembled following uncorrected errors of transcription or translation, or which were damaged by processes whose rate increases with increasing energy input rate such as photodamage to PsII. The third category includes only O2-dependent damage to the D1 protein of PsII whose rate increases with a decreasing incident flux of photosynthetically active radiation. Processes in categories two and three are most likely to impose the lower limit on the photon flux density which can support photolithotrophic growth. The available literature, mainly on organisms which are not adapted to growth at very low photon flux densities, suggests that three major limitations (charge recombination in PsII, H+ leakage and slippage, and protein turnover) can individually impose lower limits in excess of 20 nmol photon m−2 s−1 on photolithotrophic growth. Furthermore, these three limitations are interactive, so that considering all three processes acting in series leads to an even higher predicted lower photon flux density limit for photolithotrophic growth.


2019 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Megumi Yamashita ◽  
Mitsunori Yoshimura

A knowledge of photosynthetic photon flux density (PPFD: μmol m−2 s−1) is crucial for understanding plant physiological processes in photosynthesis. The diffuse component of the global PPFD on a short timescale is required for the accurate modeling of photosynthesis. However, because the PPFD is difficult to determine, it is generally estimated from incident solar radiation (SR: W m−2), which is routinely observed worldwide. To estimate the PPFD from the SR, photosynthetically active radiation (PAR: W m−2) is separated from the SR using the PAR fraction (PF; PAR/SR: unitless), and the PAR is then converted into the PPFD using the quanta-to-energy ratio (Q/E: μmol J−1). In this procedure, PF and Q/E are considered constant values; however, it was reported recently that PF and Q/E vary under different sky conditions. Moreover, the diffuse ratio (DR) is needed to distinguish the diffuse component in the global PAR, and it is known that the DR varies depending on sky conditions. Ground-based whole-sky images can be used for sky-condition monitoring, instead of human-eye interpretation. This study developed a methodology for estimating the global and diffuse PPFD using whole-sky images. Sky-condition factors were derived through whole-sky image processing, and the effects of these factors on the PF, the Q/E of global and diffuse PAR, and the DR were examined. We estimated the global and diffuse PPFD with instantaneous values using the sky-condition factors under various sky conditions, based on which the detailed effects of the sky-condition factors on PF, Q/E, and DR were clarified. The results of the PPFD estimations had small bias errors of approximately +0.3% and +3.8% and relative root mean square errors of approximately 27% and 20% for the global and diffuse PPFD, respectively.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Neringa Rasiukevičiūtė ◽  
Aušra Brazaitytė ◽  
Viktorija Vaštakaitė-Kairienė ◽  
Alma Valiuškaitė

The study aimed to evaluate the effect of different photon flux density (PFD) and light-emitting diodes (LED) wavelengths on strawberry Colletotrichum acutatum growth characteristics. The C. acutatum growth characteristics under the blue 450 nm (B), green 530 nm (G), red 660 nm (R), far-red 735 nm (FR), and white 5700 K (W) LEDs at PFD 50, 100 and 200 μmol m−2 s−1 were evaluated. The effect on C. acutatum mycelial growth evaluated by daily measuring until five days after inoculation (DAI). The presence of conidia and size (width and length) evaluated after 5 DAI. The results showed that the highest inhibition of fungus growth was achieved after 1 DAI under B and G at 50 μmol m−2 s−1 PFD. Additionally, after 1–4 DAI under B at 200 μmol m−2 s−1 PFD. The lowest conidia width was under FR at 50 μmol m−2 s−1 PFD and length under FR at 100 μmol m−2 s−1 PFD. Various LED light wavelengths influenced differences in C. acutatum colonies color. In conclusion, different photosynthetic photon flux densities and wavelengths influence C. acutatum growth characteristics. The changes in C. acutatum morphological and phenotypical characteristics could be related to its ability to spread and infect plant tissues. This study’s findings could potentially help to manage C. acutatum by LEDs in controlled environment conditions.


2017 ◽  
pp. 21
Author(s):  
Juan Antonio Cruz-Rodríguez ◽  
Edmundo García-Moya ◽  
Juan Tenorio Frías-Hernández ◽  
Genaro Montesinos-Silva ◽  
José Luis Flores-Flores

It has been said for a long time that mesquite reduces significantly cover and productivity of herbaceous vegetation in the range lands. Likewise there are evidences showing the opposite. This controversy make us think that this interaction is not fully understood. This work evaluated the effect of mesquite on the herbaceous vegetation along a gradient which range from open to a heavy dense stands. It was found that isolated arboreal mesquites reduced up to 50% the photosyntetic photon flux density which are not limiting for C4, species, whereas clustered shrubby mesquites reduces 75 % which can limit the growth of these species. Such conditions creates three plant groupings: the first made up of short and caespitose grasses which grow in the open. The second with a better and more diverse group growing under the tree canopy, dominated by bunchgrasses, cacti and shrubs. The third under the close canopy of the clustered shrubby mesquites with shrub dominance.


Sign in / Sign up

Export Citation Format

Share Document