scholarly journals The future of the oceans past

2010 ◽  
Vol 365 (1558) ◽  
pp. 3765-3778 ◽  
Author(s):  
Jeremy B. C. Jackson

Major macroevolutionary events in the history of the oceans are linked to changes in oceanographic conditions and environments on regional to global scales. Even small changes in climate and productivity, such as those that occurred after the rise of the Isthmus of Panama, caused major changes in Caribbean coastal ecosystems and mass extinctions of major taxa. In contrast, massive influxes of carbon at the end of the Palaeocene caused intense global warming, ocean acidification, mass extinction throughout the deep sea and the worldwide disappearance of coral reefs. Today, overfishing, pollution and increases in greenhouse gases are causing comparably great changes to ocean environments and ecosystems. Some of these changes are potentially reversible on very short time scales, but warming and ocean acidification will intensify before they decline even with immediate reduction in emissions. There is an urgent need for immediate and decisive conservation action. Otherwise, another great mass extinction affecting all ocean ecosystems and comparable to the upheavals of the geological past appears inevitable.

Author(s):  
Tony Hallam

When the subject of extinctions in the geological past comes up, nearly everyone’s thoughts turn to dinosaurs. It may well be true that these long-extinct beasts mean more to most children than the vast majority of living creatures. One could even go so far as to paraphrase Voltaire and maintain that if dinosaurs had never existed it would have been necessary to invent them, if only as a metaphor for obsolescence. To refer to a particular machine as a dinosaur would certainly do nothing for its market value. The irony is that the metaphor is now itself obsolete. The modern scientific view of dinosaurs differs immensely from the old one of lumbering, inefficient creatures tottering to their final decline. Their success as dominant land vertebrates through 165 million years of the Earth’s history is, indeed, now mainly regarded with wonder and even admiration. If, as is generally thought, the dinosaurs were killed off by an asteroid at the end of the Cretaceous, that is something for which no organism could possibly have been prepared by normal Darwinian natural selection. The final demise of the dinosaurs would then have been the result, not of bad genes, but of bad luck, to use the laconic words of Dave Raup. In contemplating the history of the dinosaurs it is necessary to rectify one widespread misconception. Outside scientific circles the view is widely held that the dinosaurs lived for a huge slice of geological time little disturbed by their environment until the final apocalypse. This is a serious misconception. The dinosaurs suffered quite a high evolutionary turnover rate, and this implies a high rate of extinction throughout their history. Jurassic dinosaurs, dominated by giant sauropods, stegosaurs, and the top carnivore Allosaurus, are quite different from those of the Cretaceous period, which are characterized by diverse hadrosaurs, ceratopsians, and Tyrannosaurus. Michael Crichton’s science-fiction novel Jurassic Park, made famous by the Steven Spielberg movies, features dinosaurs that are mainly from the Cretaceous, probably because velociraptors and Tyrannosaurus could provide more drama.


2019 ◽  
Vol 116 (45) ◽  
pp. 22500-22504 ◽  
Author(s):  
Michael J. Henehan ◽  
Andy Ridgwell ◽  
Ellen Thomas ◽  
Shuang Zhang ◽  
Laia Alegret ◽  
...  

Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∼50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.


2019 ◽  
Vol 116 (30) ◽  
pp. 14813-14822 ◽  
Author(s):  
Daniel H. Rothman

The history of the carbon cycle is punctuated by enigmatic transient changes in the ocean’s store of carbon. Mass extinction is always accompanied by such a disruption, but most disruptions are relatively benign. The less calamitous group exhibits a characteristic rate of change whereas greater surges accompany mass extinctions. To better understand these observations, I formulate and analyze a mathematical model that suggests that disruptions are initiated by perturbation of a permanently stable steady state beyond a threshold. The ensuing excitation exhibits the characteristic surge of real disruptions. In this view, the magnitude and timescale of the disruption are properties of the carbon cycle itself rather than its perturbation. Surges associated with mass extinction, however, require additional inputs from external sources such as massive volcanism. Surges are excited when CO2 enters the oceans at a flux that exceeds a threshold. The threshold depends on the duration of the injection. For injections lasting a time ti≳10,000 y in the modern carbon cycle, the threshold flux is constant; for smaller ti, the threshold scales like ti−1. Consequently the unusually strong but geologically brief duration of modern anthropogenic oceanic CO2 uptake is roughly equivalent, in terms of its potential to excite a major disruption, to relatively weak but longer-lived perturbations associated with massive volcanism in the geologic past.


2015 ◽  
Vol 2 (5) ◽  
pp. 140385 ◽  
Author(s):  
Mario Bronzati ◽  
Felipe C. Montefeltro ◽  
Max C. Langer

The rich fossil record of Crocodyliformes shows a much greater diversity in the past than today in terms of morphological disparity and occupation of niches. We conducted topology-based analyses seeking diversification shifts along the evolutionary history of the group. Our results support previous studies, indicating an initial radiation of the group following the Triassic/Jurassic mass extinction, here assumed to be related to the diversification of terrestrial protosuchians, marine thalattosuchians and semi-aquatic lineages within Neosuchia. During the Cretaceous, notosuchians embodied a second diversification event in terrestrial habitats and eusuchian lineages started diversifying before the end of the Mesozoic. Our results also support previous arguments for a minor impact of the Cretaceous/Palaeogene mass extinction on the evolutionary history of the group. This argument is not only based on the information from the fossil record, which shows basal groups surviving the mass extinction and the decline of other Mesozoic lineages before the event, but also by the diversification event encompassing only the alligatoroids in the earliest period after the extinction. Our results also indicate that, instead of a continuous process through time, Crocodyliformes diversification was patchy, with events restricted to specific subgroups in particular environments and time intervals.


2011 ◽  
Vol 73 (2) ◽  
pp. 78-83 ◽  
Author(s):  
Ron Wagler

There have been five past great mass extinctions during the history of Earth. There is an ever-growing consensus within the scientific community that we have entered a sixth mass extinction. Human activities are associated directly or indirectly with nearly every aspect of this extinction. This article presents an overview of the five past great mass extinctions; an overview of the current Anthropocene mass extinction; past and present human activities associated with the current Anthropocene mass extinction; current and future rates of species extinction; and broad science-curriculum topics associated with the current Anthropocene mass extinction that can be used by science educators. These broad topics are organized around the major global, anthropogenic direct drivers of habitat modification, fragmentation, and destruction; overexploitation of species; the spread of invasive species and genes; pollution; and climate change.


Paleobiology ◽  
2008 ◽  
Vol 34 (1) ◽  
pp. 128-154 ◽  
Author(s):  
W. B. Saunders ◽  
Emily Greenfest-Allen ◽  
David M. Work ◽  
S. V. Nikolaeva

Principal components analysis (PCA) of 21 shell parameters (geometry, sculpture, aperture shape, and suture complexity) in 597 L. Devonian to L. Triassic ammonoid genera (spanning ~166 Myr) shows that eight basic morphotypes appeared within ~20 Myr of the first appearance of ammonoids. With one exception, these morphotypes persisted throughout the Paleozoic, occurring in ~75% of the ~5-Myr time bins used in this study. Morphotypes were not exclusive to particular lineages. Their persistence was not just a product of phylogenetic constraints or longevity, and multiple iterations of the same morphotypes occurred at different times and in different groups. Although mass extinction events severely condensed the range of morphologic variation and taxonomic diversity, the effects were short lived and most extinct morphotypes were usually iterated within 5 Myr. The most important effect of mass extinctions on ammonoid evolutionary history seems to have been their role in large scale taxonomic turnovers; they effectively eliminated previously dominant orders at the Frasnian/Famennian (F/F) (Agoniatitida), the Devonian/Mississippian (D/M) (Clymeniida), and the Permian/Triassic (P/T) (Goniatitida and Prolecanitida) extinctions. Survivors varied from two (P/T) to four (D/M) and five genera (F/F). These events generated sharp reductions in morphologic disparity at the D/M (58%) and at the P/T (59%), but there was a net increase at the F/F (38%). There was no obvious survival bias for particular morphotypes, but 64% are interpreted to have beenNautilus-like nektobenthic. The recurrence of particular combinations of morphology and their strong independence of phylogeny are strong arguments for functional constraint. Intervals between mass extinctions seem to have been relatively static in terms of morphotype numbers, in contrast to numbers of genera. Significant decreases in genus diversity (54%) and morphologic disparity (33%) commenced in the mid-Permian (Wordian/Capitanian boundary), well before the final P/T event.


2004 ◽  
Vol 3 (1) ◽  
pp. 55-61 ◽  
Author(s):  
A.L. Melott ◽  
B.S. Lieberman ◽  
C.M. Laird ◽  
L.D. Martin ◽  
M.V. Medvedev ◽  
...  

Gamma-ray bursts (GRBs) produce a flux of radiation detectable across the observable Universe. A GRB within our own galaxy could do considerable damage to the Earth's biosphere; rate estimates suggest that a dangerously near GRB should occur on average two or more times per billion years. At least five times in the history of life, the Earth has experienced mass extinctions that eliminated a large percentage of the biota. Many possible causes have been documented, and GRBs may also have contributed. The late Ordovician mass extinction approximately 440 million years ago may be at least partly the result of a GRB. A special feature of GRBs in terms of terrestrial effects is a nearly impulsive energy input of the order of 10 s. Due to expected severe depletion of the ozone layer, intense solar ultraviolet radiation would result from a nearby GRB, and some of the patterns of extinction and survivorship at this time may be attributable to elevated levels of UV radiation reaching the Earth. In addition, a GRB could trigger the global cooling which occurs at the end of the Ordovician period that follows an interval of relatively warm climate. Intense rapid cooling and glaciation at that time, previously identified as the probable cause of this mass extinction, may have resulted from a GRB.


1998 ◽  
Vol 11 (1) ◽  
pp. 396-396
Author(s):  
I. Pustylnik

We study the short-time evolutionary history of the well-known contact binary VW Cep. Our analysis is based partly on the numerous UBV lightcurves obtained at Tartu Observatory, IUE spectra, and samples from the published data. Special attention is given to the effects of asymmetry of the light curves. A higher degree of asymmetry outside the eclipses along with the significant displacements of the brightness maxima in respect to the elongation phase is interpreted as evidence that a considerable portion of the flaring source is concentrated close to the neck connecting the components. We discuss the nature of asymmetry in terms of possible mass exchange and the flare activity and compare the results of our model computations with the record of orbital period variations over the last 60 years.


Author(s):  
Mariela C. Castro ◽  
Murilo J. Dahur ◽  
Gabriel S. Ferreira

AbstractDidelphidae is the largest New World radiation of marsupials, and is mostly represented by arboreal, small- to medium-sized taxa that inhabit tropical and/or subtropical forests. The group originated and remained isolated in South America for millions of years, until the formation of the Isthmus of Panama. In this study, we present the first reconstruction of the biogeographic history of Didelphidae including all major clades, based on parametric models and stratified analyses over time. We also compiled all the pre-Quaternary fossil records of the group, and contrasted these data to our biogeographic inferences, as well as to major environmental events that occurred in the South American Cenozoic. Our results indicate the relevance of Amazonia in the early diversification of Didelphidae, including the divergence of the major clades traditionally ranked as subfamilies and tribes. Cladogeneses in other areas started in the late Miocene, an interval of intense shifts, especially in the northern portion of Andes and Amazon Basin. Occupation of other areas continued through the Pliocene, but few were only colonized in Quaternary times. The comparison between the biogeographic inference and the fossil records highlights some further steps towards better understanding the spatiotemporal evolution of the clade. Finally, our results stress that the early history of didelphids is obscured by the lack of Paleogene fossils, which are still to be unearthed from low-latitude deposits of South America.


Sign in / Sign up

Export Citation Format

Share Document