scholarly journals Selection on female remating interval is influenced by male sperm competition strategies and ejaculate characteristics

2013 ◽  
Vol 368 (1613) ◽  
pp. 20120044 ◽  
Author(s):  
Suzanne H. Alonzo ◽  
Tommaso Pizzari

Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity.

2009 ◽  
Vol 5 (5) ◽  
pp. 678-681 ◽  
Author(s):  
Nina Wedell ◽  
Christer Wiklund ◽  
Jonas Bergström

Sexual conflict can promote rapid evolution of male and female reproductive traits. Males of many polyandrous butterflies transfer nutrients at mating that enhances female fecundity, but generates sexual conflict over female remating due to sperm competition. Butterflies produce both normal fertilizing sperm and large numbers of non-fertile sperm. In the green-veined white butterfly, Pieris napi , non-fertile sperm fill the females' sperm storage organ, switching off receptivity and thereby reducing female remating. There is genetic variation in the number of non-fertile sperm stored, which directly relates to the female's refractory period. There is also genetic variation in males' sperm production. Here, we show that females' refractory period and males' sperm production are genetically correlated using quantitative genetic and selection experiments. Thus selection on male manipulation may increase the frequency of susceptible females to such manipulations as a correlated response and vice versa .


2015 ◽  
Vol 282 (1799) ◽  
pp. 20141897 ◽  
Author(s):  
Clair Bennison ◽  
Nicola Hemmings ◽  
Jon Slate ◽  
Tim Birkhead

Sperm competition, in which the ejaculates of multiple males compete to fertilize a female's ova, results in strong selection on sperm traits. Although sperm size and swimming velocity are known to independently affect fertilization success in certain species, exploring the relationship between sperm length, swimming velocity and fertilization success still remains a challenge. Here, we use the zebra finch ( Taeniopygia guttata ), where sperm size influences sperm swimming velocity, to determine the effect of sperm total length on fertilization success. Sperm competition experiments, in which pairs of males whose sperm differed only in length and swimming speed, revealed that males producing long sperm were more successful in terms of (i) the number of sperm reaching the ova and (ii) fertilizing those ova. Our results reveal that although sperm length is the main factor determining the outcome of sperm competition, complex interactions between male and female reproductive traits may also be important. The mechanisms underlying these interactions are poorly understood, but we suggest that differences in sperm storage and utilization by females may contribute to the outcome of sperm competition.


Author(s):  
Zachariah Wylde ◽  
Angela Crean ◽  
Russell Bonduriansky

Abstract Ejaculate traits can be sexually selected and often exhibit heightened condition-dependence. However, the influence of sperm competition risk in tandem with condition-dependent ejaculate allocation strategies is relatively unstudied. Because ejaculates are costly to produce, high-condition males may be expected to invest more in ejaculates when sperm competition risk is greater. We examined the condition-dependence of ejaculate size by manipulating nutrient concentration in the juvenile (larval) diet of the neriid fly Telostylinus angusticollis. Using a fully factorial design we also examined the effects of perceived sperm competition risk (manipulated by allowing males to mate first or second) on the quantity of ejaculate transferred and stored in the three spermathecae of the female reproductive tract. To differentiate male ejaculates, we fed males nontoxic rhodamine fluorophores (which bind to proteins in the body) prior to mating, labeling their sperm red or green. We found that high-condition males initiated mating more quickly and, when mating second, transferred more ejaculate to both of the female’s posterior spermathecae. This suggests that males allocate ejaculates strategically, with high-condition males elevating their ejaculate investment only when facing sperm competition. More broadly, our findings suggest that ejaculate allocation strategies can incorporate variation in both condition and perceived risk of sperm competition.


2018 ◽  
Vol 47 (0) ◽  
Author(s):  
Marina Rufino Salinas Fortes ◽  
Charmaine Enculescu ◽  
Laercio R. Porto Neto ◽  
Sigrid A. Lehnert ◽  
Russell McCulloch ◽  
...  

Plant Biology ◽  
2004 ◽  
Vol 6 (5) ◽  
pp. 621-628 ◽  
Author(s):  
V. P. Thomson ◽  
A. B. Nicotra ◽  
S. A. Cunningham

2005 ◽  
Vol 21 (3) ◽  
pp. 195-199 ◽  
Author(s):  
G. Gargantini ◽  
L.V. Cundiff ◽  
D.D. Lunstra ◽  
L.D. Van Vleck

Sign in / Sign up

Export Citation Format

Share Document