female survival
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 40)

H-INDEX

21
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Michelle McLellan

<p>Identifying the mechanisms causing population change is essential for conserving small and declining populations. Substantial range contraction of many carnivore species has resulted in fragmented global populations with numerous small isolates in need of conservation. Here I investigate the rate and possible agents of change in two threatened grizzly bear (Ursus arctos) populations in southwestern British Columbia, Canada. I use a combination of population vital rates estimates, population trends, habitat quality analyses, and comparisons to what has been described in the literature, to carefully compare among possible mechanisms of change. First, I estimate population density, realized growth rates (λ), and the demographic components of population change for each population using DNA based capture-recapture data in both spatially explicit capture-recapture (SECR) and non-spatial Pradel robust design frameworks. The larger population had 21.5 bears/1000km2 and between 2006 and 2016 was growing (λPradel = 1.02 ± 0.02 SE, λsecr = 1.01 ± 4.6 x10-5 SE) following the cessation of hunting. The adjacent but smaller population had 6.3 bears/1000km2 and between 2005 and 2017 was likely declining (λPradel = 0.95 ± 0.03 SE, λsecr = 0.98 ± 0.02 SE). Estimates of apparent survival and recruitment indicated that lower recruitment was the dominant factor limiting population growth in the smaller population.  Then I use data from GPS-collared bears to estimate reproduction, survival and projected population change (λ) in both populations. Adult female survival was 0.96 (95% CI: 0.80-0.99) in the larger population (McGillvary Mountains or MM) and 0.87 (95% CI: 0.69-0.95) in the small, isolated population (North Stein-Nahatlatch or NSN). Cub survival was also higher in the MM (0.85, 95%CI: 0.62-0.95) than the NSN population (0.33, 95%CI: 0.11-0.67). This analysis identifies both low adult female survival and low cub survival as the demographic factors associated with population decline in the smaller population. By comparing the vital rates from these two populations with other small populations, I suggest that when grizzly bear populations are isolated, there appears to be a tipping point (de Silva and Leimgruber 2019) around 50 individuals, below which adult female mortality, even with intensive management, becomes prohibitive for population recovery. This analysis provides the first detailed estimates of population vital rates for a grizzly bear population of this size, and this information has been important for subsequent management action. To determine whether bottom-up factors (i.e. food) are limiting population growth and recovery in the small isolated population I use resource selection analysis from GPS collar data. I develop resource selection functions (RSF) for four dominant foraging seasons: the spring-early summer season when bears feed predominantly on herbaceous plants and dig for bulbs, the early fruit season where they feed on low elevation berries and cherries, the huckleberry season and the post berry season when foraging behaviours are most diverse but whitebark pine nuts are a relatively common food source. The differences in overall availability of high-quality habitats for different food types, especially huckleberries, between populations suggests that season specific bottom-up effects may account for some differences in population densities. Resource selections are a very common tool used for estimating resource distribution and availability, however, their ability to estimate food abundance on the ground are usually not tested. I assessed the accuracy of the resulting RSF models for predicting huckleberry presence and abundance measured in field plots. My results show that berry specific models did predict berry abundance in previously disturbed sites though varied in accuracy depending on how the models were categorized and projected across the landscape. Finally, I combine spatially explicit capture-recapture methods and models developed from resource selection modelling to estimate the effect of seasonal habitat availability and open road density, as a surrogate for top-down effects, on the bear density in the two populations. I found that population density is most strongly connected to habitats selected during a season when bears fed on huckleberries, the major high-energy food bears eat during hyperphagia in this area, as well as a large baseline difference between populations. The abundance of high-quality huckleberry habitat appears to be an important factor enabling the recovery of the larger population that is also genetically connected to other bears. The adjacent, smaller and genetically isolated population is not growing. The relatively low abundance of high-quality berry habitat in this population may be contributing to the lack of growth of the population. However, it is likely that the legacy of historic mortality and current stochastic effects, inbreeding effects, or other Allee effects, are also contributing to the continued low density observed. While these small population effects may be more challenging to overcome, this analysis suggests that the landscape can accommodate a higher population density than that currently observed.</p>


2021 ◽  
Author(s):  
◽  
Michelle McLellan

<p>Identifying the mechanisms causing population change is essential for conserving small and declining populations. Substantial range contraction of many carnivore species has resulted in fragmented global populations with numerous small isolates in need of conservation. Here I investigate the rate and possible agents of change in two threatened grizzly bear (Ursus arctos) populations in southwestern British Columbia, Canada. I use a combination of population vital rates estimates, population trends, habitat quality analyses, and comparisons to what has been described in the literature, to carefully compare among possible mechanisms of change. First, I estimate population density, realized growth rates (λ), and the demographic components of population change for each population using DNA based capture-recapture data in both spatially explicit capture-recapture (SECR) and non-spatial Pradel robust design frameworks. The larger population had 21.5 bears/1000km2 and between 2006 and 2016 was growing (λPradel = 1.02 ± 0.02 SE, λsecr = 1.01 ± 4.6 x10-5 SE) following the cessation of hunting. The adjacent but smaller population had 6.3 bears/1000km2 and between 2005 and 2017 was likely declining (λPradel = 0.95 ± 0.03 SE, λsecr = 0.98 ± 0.02 SE). Estimates of apparent survival and recruitment indicated that lower recruitment was the dominant factor limiting population growth in the smaller population.  Then I use data from GPS-collared bears to estimate reproduction, survival and projected population change (λ) in both populations. Adult female survival was 0.96 (95% CI: 0.80-0.99) in the larger population (McGillvary Mountains or MM) and 0.87 (95% CI: 0.69-0.95) in the small, isolated population (North Stein-Nahatlatch or NSN). Cub survival was also higher in the MM (0.85, 95%CI: 0.62-0.95) than the NSN population (0.33, 95%CI: 0.11-0.67). This analysis identifies both low adult female survival and low cub survival as the demographic factors associated with population decline in the smaller population. By comparing the vital rates from these two populations with other small populations, I suggest that when grizzly bear populations are isolated, there appears to be a tipping point (de Silva and Leimgruber 2019) around 50 individuals, below which adult female mortality, even with intensive management, becomes prohibitive for population recovery. This analysis provides the first detailed estimates of population vital rates for a grizzly bear population of this size, and this information has been important for subsequent management action. To determine whether bottom-up factors (i.e. food) are limiting population growth and recovery in the small isolated population I use resource selection analysis from GPS collar data. I develop resource selection functions (RSF) for four dominant foraging seasons: the spring-early summer season when bears feed predominantly on herbaceous plants and dig for bulbs, the early fruit season where they feed on low elevation berries and cherries, the huckleberry season and the post berry season when foraging behaviours are most diverse but whitebark pine nuts are a relatively common food source. The differences in overall availability of high-quality habitats for different food types, especially huckleberries, between populations suggests that season specific bottom-up effects may account for some differences in population densities. Resource selections are a very common tool used for estimating resource distribution and availability, however, their ability to estimate food abundance on the ground are usually not tested. I assessed the accuracy of the resulting RSF models for predicting huckleberry presence and abundance measured in field plots. My results show that berry specific models did predict berry abundance in previously disturbed sites though varied in accuracy depending on how the models were categorized and projected across the landscape. Finally, I combine spatially explicit capture-recapture methods and models developed from resource selection modelling to estimate the effect of seasonal habitat availability and open road density, as a surrogate for top-down effects, on the bear density in the two populations. I found that population density is most strongly connected to habitats selected during a season when bears fed on huckleberries, the major high-energy food bears eat during hyperphagia in this area, as well as a large baseline difference between populations. The abundance of high-quality huckleberry habitat appears to be an important factor enabling the recovery of the larger population that is also genetically connected to other bears. The adjacent, smaller and genetically isolated population is not growing. The relatively low abundance of high-quality berry habitat in this population may be contributing to the lack of growth of the population. However, it is likely that the legacy of historic mortality and current stochastic effects, inbreeding effects, or other Allee effects, are also contributing to the continued low density observed. While these small population effects may be more challenging to overcome, this analysis suggests that the landscape can accommodate a higher population density than that currently observed.</p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258136
Author(s):  
Craig A. DeMars ◽  
Sophie Gilbert ◽  
Robert Serrouya ◽  
Allicia P. Kelly ◽  
Nicholas C. Larter ◽  
...  

As global climate change progresses, wildlife management will benefit from knowledge of demographic responses to climatic variation, particularly for species already endangered by other stressors. In Canada, climate change is expected to increasingly impact populations of threatened woodland caribou (Rangifer tarandus caribou) and much focus has been placed on how a warming climate has potentially facilitated the northward expansion of apparent competitors and novel predators. Climate change, however, may also exert more direct effects on caribou populations that are not mediated by predation. These effects include meteorological changes that influence resource availability and energy expenditure. Research on other ungulates suggests that climatic variation may have minimal impact on low-density populations such as woodland caribou because per-capita resources may remain sufficient even in “bad” years. We evaluated this prediction using demographic data from 21 populations in western Canada that were monitored for various intervals between 1994 and 2015. We specifically assessed whether juvenile recruitment and adult female survival were correlated with annual variation in meteorological metrics and plant phenology. Against expectations, we found that both vital rates appeared to be influenced by annual climatic variation. Juvenile recruitment was primarily correlated with variation in phenological conditions in the year prior to birth. Adult female survival was more strongly correlated with meteorological conditions and declined during colder, more variable winters. These responses may be influenced by the life history of woodland caribou, which reside in low-productivity refugia where small climatic changes may result in changes to resources that are sufficient to elicit strong demographic effects. Across all models, explained variation in vital rates was low, suggesting that other factors had greater influence on caribou demography. Nonetheless, given the declining trajectories of many woodland caribou populations, our results highlight the increased relevance of recovery actions when adverse climatic conditions are likely to negatively affect caribou demography.


Author(s):  
Anke Kloock ◽  
Lena Peters ◽  
Charlotte Rafaluk-Mohr

In most animals, female investment in offspring production is greater than for males. Lifetime reproductive success (LRS) is predicted to be optimized in females through extended lifespans to maximize reproductive events by increased investment in immunity. Males, however, maximize lifetime reproductive success by obtaining as many matings as possible. In populations consisting of mainly hermaphrodites, optimization of reproductive success may be primarily influenced by gamete and resource availability. Microbe-mediated protection (MMP) is known to affect both immunity and reproduction, but whether sex influences the response to MMP remains to be explored. Here, we investigated the sex-specific differences in survival, behavior, and timing of offspring production between feminized hermaphrodite (female) and male Caenorhabditis elegans following pathogenic infection with Staphylococcus aureus with or without MMP by Enterococcus faecalis. Overall, female survival decreased with increased mating. With MMP, females increased investment into offspring production, while males displayed higher behavioral activity. MMP was furthermore able to dampen costs that females experience due to mating with males. These results demonstrate that strategies employed under pathogen infection with and without MMP are sex dependent.


Author(s):  
Jeffrey B Mason ◽  
Tracy L Habermehl ◽  
Kaden B Underwood ◽  
Augusto Schneider ◽  
Miguel A Brieño-Enriquez ◽  
...  

Abstract The link between survival and reproductive function is demonstrated across many species and is under both long-term evolutionary pressures and short-term environmental pressures. Loss of reproductive function is common in mammals and is strongly correlated with increased rates of disease in both males and females. However, the reproduction-associated change in disease rates is more abrupt and more severe in women, who benefit from a significant health advantage over men until the age of menopause. Young women with early ovarian failure also suffer from increased disease risks, further supporting the role of ovarian function in female health. Contemporary experiments where the influence of young ovarian tissue has been restored in post-reproductive-aged females with surgical manipulation were found to increase survival significantly. In these experiments, young, intact ovaries were used to replace the aged ovaries of females that had already reached reproductive cessation. As has been seen previously in primitive species, when the young mammalian ovaries were depleted of germ cells prior to transplantation to the post-reproductive female, survival was increased even further than with germ cell-containing young ovaries. Thus, extending reproductive potential significantly increases survival and appears to be germ cell and ovarian hormone-independent. The current review will discuss historical and contemporary observations and theories that support the link between reproduction and survival and provide hope for future clinical applications to decrease menopause-associated increases in disease risks.


2021 ◽  
Author(s):  
Mariana Abreu Costa ◽  
Elizeu Sá Farias ◽  
Eliana Donizete Andrade ◽  
Vinícius Castro Carvalho ◽  
Geraldo Andrade Carvalho

Abstract The egg parasitoid Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) regulates lepidopteran pest populations in cotton crops. However, cotton harbors dozens of pests, and growers rely on multiple insecticide applications to manage these damaging organisms. A harmonious integration of control tactics is required for proper pest management, and the use of selective insecticides (i.e., those promoting effective pest control while causing little impact on natural enemies) fits within this scope. This study aimed to assess the lethal, sublethal and transgenerational effects of insecticides from varying chemical groups on T. pretiosum. The insecticides were sprayed on parasitized host [Ephestia kuehniella (Zeller)] eggs with developing T. pretiosum stages (egg-larva, prepupa and pupa), and biological traits were assessed following adult emergence. Overall, pupae were more susceptible to the insecticides. We found thiodicarb and chlorfenapyr to reduce F0 adult emergence in rates comparable to the positive control (methomyl). Adult F0 deformation was the highest on flupyradifurone-treated organisms, and both the F0 parasitism rate and female survival were reduced by the insecticides (except for teflubenzuron). The sex ratio was affected by thiodicarb and flupyradifurone. Transgenerational effects occurred on adult emergence, which was reduced on the offspring (F1) of thiodicarb-, chlorfenapyr-, and flupyradifurone-treated T. pretiosum. In addition, thiodicarb lessened the F1 sex ratio. Combined, these results indicate that teflubenzuron is the safest insecticide; the other insecticides (especially thiodicarb and chlorfenapyr) are non-selective to T. pretiosum. Field and semifield studies are required to confirm the harmfulness of thiodicarb and chlorfenapyr towards T. pretiosum.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dong Jun Kim ◽  
Ji Won Yoo ◽  
Jong Wha Chang ◽  
Takashi Yamashita ◽  
Eun-Cheol Park ◽  
...  

Abstract Background In Korea, the universal health system offers coverage to all members of society. Despite this, it is unclear whether risk of death from hepatocellular carcinoma (HCC) varies depending on income. We evaluated the impact of low income on HCC mortality. Methods The Korean National Health Insurance sampling cohort was used to identify new HCC cases (n = 7325) diagnosed between 2004 and 2008, and the Korean Community Health Survey data were used to investigate community-level effects. The main outcome was 5-year all-cause mortality risk, and Cox proportional hazard models were applied to investigate the individual- and community-level factors associated with the survival probability of HCC patients. Results From 2004 to 2008, there were 4658 new HCC cases among males and 2667 new cases among females. The 5-year survival proportion of males was 68%, and the incidence per person-year was 0.768; the female survival proportion was 78%, and the incidence per person-year was 0.819. Lower income was associated with higher hazard ratio (HR), and HCC patients with hepatitis B (HBV), alcoholic liver cirrhosis, and other types of liver cirrhosis had higher HRs than those without these conditions. Subgroup analyses showed that middle-aged men were most vulnerable to the effects of low income on 5-year mortality, and community-level characteristics were associated with survival of HCC patients. Conclusion Having a low income significantly affected the overall 5-year mortality of Korean adults who were newly diagnosed with HCC from 2004 to 2008. Middle-aged men were the most vulnerable. We believe our findings will be useful to healthcare policymakers in Korea as well as to healthcare leaders in countries with NHI programs who need to make important decisions about allocation of limited healthcare resources according to a consensually accepted and rational framework.


Author(s):  
Sakshi Sharda ◽  
Tadeusz Kawecki ◽  
Brian Hollis

Theory predicts that sexual selection should aid adaptation to novel environments, but empirical support for this idea is limited. Pathogens are a major driver of host evolution and, unlike abiotic selection pressures, undergo epidemiological and co-evolutionary cycles with the host involving adaptation and counteradaptation. Because of this, populations harbor ample genetic variation underlying immunity and the opportunity for sexual selection based on condition-dependent “good genes” is expected to be large. In this study, we evolved populations of Drosophila melanogaster in a 2-way factorial design manipulating sexual selection and pathogen presence, using a gram-negative insect pathogen Pseudomonas entomophila, for 14 generations. We then examined how the presence of sexual selection and the pathogen, as well as any potential interaction, affected the evolution of pathogen resistance. We found increased resistance to P. entomophila in populations that evolved under pathogen pressure, driven primarily by increased female survival after infection despite selection for resistance acting only on males over the course of experimental evolution. This result suggests that the genetic basis of resistance is in part shared between the sexes. We did not find any evidence of sexual selection aiding adaptation to pathogen, however, a finding contrary to the predictions of “good genes” theory. Our results therefore provide no support for a role for sexual selection in the evolution of immunity in this experimental system.


2021 ◽  
Author(s):  
Sophia Volzke ◽  
Clive R. McMahon ◽  
Mark A. Hindell ◽  
Harry R. Burton ◽  
Simon J. Wotherspoon

Sign in / Sign up

Export Citation Format

Share Document