scholarly journals Modulation of network activity and induction of homeostatic synaptic plasticity by enzymatic removal of heparan sulfates

2014 ◽  
Vol 369 (1654) ◽  
pp. 20140134 ◽  
Author(s):  
Svetlana Korotchenko ◽  
Lorenzo A. Cingolani ◽  
Tatiana Kuznetsova ◽  
Luca Leonardo Bologna ◽  
Michela Chiappalone ◽  
...  

Heparan sulfates (HSs) are complex and highly active molecules that are required for synaptogenesis and long-term potentiation. A deficit in HSs leads to autistic phenotype in mice. Here, we investigated the long-term effect of heparinase I, which digests highly sulfated HSs, on the spontaneous bioelectrical activity of neuronal networks in developing primary hippocampal cultures. We found that chronic heparinase treatment led to a significant reduction of the mean firing rate of neurons, particularly during the period of maximal neuronal activity. Furthermore, firing pattern in heparinase-treated cultures often appeared as epileptiform bursts, with long periods of inactivity between them. These changes in network activity were accompanied by an increase in the frequency and amplitude of miniature postsynaptic excitatory currents, which could be described by a linear up-scaling of current amplitudes. Biochemically, we observed an upregulation in the expression of the glutamate receptor subunit GluA1, but not GluA2, and a strong increase in autophosphorylation of α and β Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), without changes in the levels of kinase expression. These data suggest that a deficit in HSs triggers homeostatic synaptic plasticity and drastically affects functional maturation of neural network.

2019 ◽  
Author(s):  
Yulia Dembitskaya ◽  
Yu-Wei Wu ◽  
Alexey Semyanov

AbstractSynaptic plasticity is triggered by different patterns of neuronal network activity. Network activity leads to an increase in ambient GABA concentration and tonic activation of GABAA receptors. How tonic GABAA conductance affects synaptic plasticity during temporal and rate-based coding is poorly understood. Here, we show that tonic GABAA conductance differently affects long-term potentiation (LTP) induced by different stimulation patterns. The LTP based on a temporal spike - EPSP order (spike-timing-dependent [st] LTP) was not affected by exogenous GABA application. Backpropagating action potential, which enables Ca2+ entry through N-methyl-D-aspartate receptors (NMDARs) during stLTP induction, was only slightly reduced by the tonic conductance. In contrast, GABA application impeded LTP dependent on spiking rate (theta-burst-induced [tb] LTP) by reducing the EPSP bust response and, hence, NMDAR-mediated Ca2+ entry during tbLTP induction. Our results may explain the changes in different forms of memory under physiological and pathological conditions that affect tonic GABAA conductance.


2013 ◽  
Vol 203 (2) ◽  
pp. 175-186 ◽  
Author(s):  
Nathalia Vitureira ◽  
Yukiko Goda

Synaptic plasticity, a change in the efficacy of synaptic signaling, is a key property of synaptic communication that is vital to many brain functions. Hebbian forms of long-lasting synaptic plasticity—long-term potentiation (LTP) and long-term depression (LTD)—have been well studied and are considered to be the cellular basis for particular types of memory. Recently, homeostatic synaptic plasticity, a compensatory form of synaptic strength change, has attracted attention as a cellular mechanism that counteracts changes brought about by LTP and LTD to help stabilize neuronal network activity. New findings on the cellular mechanisms and molecular players of the two forms of plasticity are uncovering the interplay between them in individual neurons.


2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Mensch ◽  
Jade Dunot ◽  
Sandy M. Yishan ◽  
Samuel S. Harris ◽  
Aline Blistein ◽  
...  

Abstract Background Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


2006 ◽  
Vol 16 ◽  
pp. S52
Author(s):  
S. Salomon ◽  
Y. Nachum-Biala ◽  
Y. Bogush ◽  
M. Lineal ◽  
H. Matzner ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yire Jeong ◽  
Hye-Yeon Cho ◽  
Mujun Kim ◽  
Jung-Pyo Oh ◽  
Min Soo Kang ◽  
...  

AbstractMemory is supported by a specific collection of neurons distributed in broad brain areas, an engram. Despite recent advances in identifying an engram, how the engram is created during memory formation remains elusive. To explore the relation between a specific pattern of input activity and memory allocation, here we target a sparse subset of neurons in the auditory cortex and thalamus. The synaptic inputs from these neurons to the lateral amygdala (LA) are not potentiated by fear conditioning. Using an optogenetic priming stimulus, we manipulate these synapses to be potentiated by the learning. In this condition, fear memory is preferentially encoded in the manipulated cell ensembles. This change, however, is abolished with optical long-term depression (LTD) delivered shortly after training. Conversely, delivering optical long-term potentiation (LTP) alone shortly after fear conditioning is sufficient to induce the preferential memory encoding. These results suggest a synaptic plasticity-dependent competition rule underlying memory formation.


Proteomes ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 40 ◽  
Author(s):  
Joongkyu Park

Synaptic plasticity has been considered a key mechanism underlying many brain functions including learning, memory, and drug addiction. An increase or decrease in synaptic activity of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complex mediates the phenomena as shown in the cellular models of synaptic plasticity, long-term potentiation (LTP), and depression (LTD). In particular, protein phosphorylation shares the spotlight in expressing the synaptic plasticity. This review summarizes the studies on phosphorylation of the AMPAR pore-forming subunits and auxiliary proteins including transmembrane AMPA receptor regulatory proteins (TARPs) and discusses its role in synaptic plasticity.


2020 ◽  
pp. 69-82
Author(s):  
Enikö A. Kramár

Estrogens are rapid and potent facilitators of synaptic plasticity in the adult brain; however, the steps that link estrogens to factors that regulate synaptic strength remain unclear. The present chapter will first review the acute effects of 17β‎-estradiol on synaptic transmission and long-term potentiation (LTP). It will then describe a synaptic model used to study the substrates of LTP and provide evidence for the ability of estradiol to rapidly engage a selective actin signaling cascade associated with the consolidation of LTP. Finally, it will be shown that chronic reductions in estradiol levels disrupt LTP and actin dynamics but can be reversed by acute infusions of the hormone. It is concluded here that estradiol can promote learning-related plasticity by modifying the synaptic cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document