scholarly journals The Morphology of Human Immunodeficiency Virus Particles by Negative Staining Electron Microscopy

1987 ◽  
Vol 68 (3) ◽  
pp. 919-923 ◽  
Author(s):  
L. M. Stannard ◽  
F. D. St. J. van der Riet ◽  
J. W. Moodie
2004 ◽  
Vol 78 (15) ◽  
pp. 8085-8093 ◽  
Author(s):  
D. Spehner ◽  
S. De Carlo ◽  
R. Drillien ◽  
F. Weiland ◽  
K. Mildner ◽  
...  

ABSTRACT Parapoxviruses can be morphologically distinguished from other poxviruses in conventional negative staining electron microscopy (EM) by their ovoid appearance and the spiral tubule surrounding the virion's surface. However, this technique may introduce artifacts. We have examined Orf virus (ORFV; the prototype species of the Parapoxvirus genus) by cryoelectron microscopy (cryo-EM) and cryo-negative staining EM. From these studies we suggest that the shape and unique spiral tubule are authentic features of the parapoxviruses. We also constructed an ORFV mutant deleted of a gene encoding a 10-kDa protein, which is an orthologue of the vaccinia virus (VACV) 14-kDa fusion protein, and investigated its ultrastructure. This mutant virus multiplied slowly in permissive cells and produced infectious but morphologically aberrant particles. Mutant virions lacked the spiral tubule but displayed short disorganized tubules similar to those observed on the surface of VACV. In addition, thin extensions or loop-like structures were appended to the ORFV mutant particles. We suggest that these appended structures arise from a failure of the mutant virus particles to properly seal and that the sealing activity is dependent on the 10-kDa protein.


2006 ◽  
Vol 80 (11) ◽  
pp. 5292-5300 ◽  
Author(s):  
Jayanta Bhattacharya ◽  
Alexander Repik ◽  
Paul R. Clapham

ABSTRACT Assembly of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein on budding virus particles is important for efficient infection of target cells. In infected cells, lipid rafts have been proposed to form platforms for virus assembly and budding. Gag precursors partly associate with detergent-resistant membranes (DRMs) that are believed to represent lipid rafts. The cytoplasmic domain of the envelope gp41 usually carries palmitate groups that were also reported to confer DRM association. Gag precursors confer budding and carry envelope glycoproteins onto virions via specific Gag-envelope interactions. Thus, specific mutations in both the matrix domain of the Gag precursor and gp41 cytoplasmic domain abrogate envelope incorporation onto virions. Here, we show that HIV-1 envelope association with DRMs is directly influenced by its interaction with Gag. Thus, in the absence of Gag, envelope fails to associate with DRMs. A mutation in the p17 matrix (L30E) domain in Gag (Gag L30E) that abrogates envelope incorporation onto virions also eliminated envelope association with DRMs in 293T cells and in the T-cell line, MOLT 4. These observations are consistent with a requirement for an Env-Gag interaction for raft association and subsequent assembly onto virions. In addition to this observation, we found that mutations in the gp41 cytoplasmic domain that abrogated envelope incorporation onto virions and impaired infectivity of cell-free virus also eliminated envelope association with DRMs. On the basis of these observations, we propose that Gag-envelope interaction is essential for efficient envelope association with DRMs, which in turn is essential for envelope budding and assembly onto virus particles.


1999 ◽  
Vol 5 (S2) ◽  
pp. 1098-1099
Author(s):  
Sara E. Miller

Infection with human immunodeficiency virus (HIV) eventually causes a profound decrease in the body's ability to eradicate or control infections with microorganisms, including viruses. Some infections in AIDS patients are due to common organisms which are of little significance in immunocompetent individuals. Other organisms can be harbored continuously, occasionally causing disease, but normally being suppressed after a heightened immune defense; in AIDS patients, these infections can be life-threatening. Further, practices that predispose to HIV infection also permit entry of other organisms, such as hepatitis and herpesviruses. Electron microscopy is beneficial as an adjunct to other modalities for viral detection. Methods for identifying viruses, both in fluids by negative staining and in tissues by thin sectioning, have been published. Some viral pathogens, including HIV itself, are best documented by other means.HIV has been demonstrated by EM in infected individuals, but because it destroys and makes scarce the cells for which it has an affinity, it is difficult to find them.


2002 ◽  
Vol 76 (3) ◽  
pp. 959-967 ◽  
Author(s):  
Jun-ichi Sakuragi ◽  
Aikichi Iwamoto ◽  
Tatsuo Shioda

ABSTRACT The dimer initiation site/dimer linkage sequence (DIS/DLS) region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is thought to play important roles at various stages of the virus life cycle. Recently we showed that the DIS/DLS region affects RNA-RNA interaction in intact virus particles, by demonstrating that duplication of the region in viral RNA caused the production of virus particles containing partially monomeric RNAs. We have extended this finding and succeeded for the first time in creating mutant particles which contain only monomeric RNAs without modifying any viral proteins. In terms of RNA encapsidation ability, virion density, and protein processing, the mutant particles were comparable to wild-type particles. The level of production of viral DNA by the mutant virus construct in infected cells was also comparable to that of the constructs that produced exclusively dimeric RNA, indicating that monomeric viral RNA could be the template for strand transfer. These results indicated that the RNA dimerization of HIV-1 could be separated from viral RNA packaging and was not absolutely required for RNA packaging, virion maturation, and reverse transcription.


Sign in / Sign up

Export Citation Format

Share Document