scholarly journals Equine rhinitis B virus: a new serotype

2001 ◽  
Vol 82 (11) ◽  
pp. 2641-2645 ◽  
Author(s):  
Jin-an Huang ◽  
Nino Ficorilli ◽  
Carol A. Hartley ◽  
Rebbecca S. Wilcox ◽  
Marianne Weiss ◽  
...  

Equine rhinovirus serotype 3 isolate P313/75 was assigned, with an unclassified genus status, to the family Picornaviridae. The sequence from the 5′ poly(C) tract to the 3′ poly(A) tract of P313/75 was determined. The sequence is 8821 bases in length and contains a potential open reading frame for a polyprotein of 2583 amino acids. Sequence comparison and phylogenic analysis suggest that P313/75 is most closely related to the prototype equine rhinitis B virus (ERBV) strain P1436/71, formerly named equine rhinovirus type 2. A high degree of sequence similarity was found in the P2 and P3 regions of the two genomes. However, the deduced amino acid sequences of the P1 region of P313/75 and ERBV strain P1436/71 contained significant differences, which presumably account for the serological segregation of the two viruses. It is suggested that P313/75 can be classified as a new serotype of the genus Erbovirus, tentatively named ERBV2. Seroepidemiological data indicate that ERBV2 infection of horses may be common (24%) in Australia.

1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


1998 ◽  
Vol 42 (2) ◽  
pp. 436-439 ◽  
Author(s):  
T. R. Walsh ◽  
W. A. Neville ◽  
M. H. Haran ◽  
D. Tolson ◽  
D. J. Payne ◽  
...  

ABSTRACT The Aeromonas veronii bv. sobria metallo-β-lactamase gene, imiS, was cloned. The imiS open reading frame extends for 762 bp and encodes a protein of 254 amino acids with a secreted modified protein of 227 amino acids and a predicted pI of 8.1. To confirm the predicted sequence, purified ImiS was digested and the resulting peptides were identified, yielding an identical sequence for ImiS, with 98% identity to CphA. Both possessed the putative active-site sequence Asn-Tyr-His-Thr-Asp at positions 88 to 92, which is unique to the Aeromonas metallo-β-lactamases.


2002 ◽  
Vol 83 (6) ◽  
pp. 1477-1482 ◽  
Author(s):  
Kyoji Hagiwara ◽  
Shujing Rao ◽  
Simon W. Scott ◽  
Gerald R. Carner

The complete nucleotide sequences of genomic segments S1, S3 and S4 from Bombyx mori cypovirus 1 (BmCPV-1) have been determined. The segments consisted of 4190, 3846 and 3262 nucleotides encoding putative proteins of 1333, 1239 and 1058 amino acids with molecular masses of approximately 148, 140 and 120 kDa (p148, p140 and p120, respectively). All segments possess a single open reading frame. Homology searches showed that all three proteins have homologies to proteins of Rice ragged stunt virus, a member of the genus Oryzavirus within the family Reoviridae. Partial homologies of p140 to structural proteins in other viruses were also found. The predicted molecular masses and the homologies with structural proteins in other viruses lead us to suggest that S1, S3 and S4 encode the capsid proteins VP1, VP3, and VP4, respectively, of BmCPV-1.


1986 ◽  
Vol 6 (5) ◽  
pp. 1711-1721 ◽  
Author(s):  
E M McIntosh ◽  
R H Haynes

The dCMP deaminase gene (DCD1) of Saccharomyces cerevisiae has been isolated by screening a Sau3A clone bank for complementation of the dUMP auxotrophy exhibited by dcd1 dmp1 haploids. Plasmid pDC3, containing a 7-kilobase (kb) Sau3A insert, restores dCMP deaminase activity to dcd1 mutants and leads to an average 17.5-fold overproduction of the enzyme in wild-type cells. The complementing activity of the plasmid was localized to a 4.2-kb PvuII restriction fragment within the Sau3A insert. Subcloning experiments demonstrated that a single HindIII restriction site within this fragment lies within the DCD1 gene. Subsequent DNA sequence analysis revealed a 936-nucleotide open reading frame encompassing this HindIII site. Disruption of the open reading frame by integrative transformation led to a loss of enzyme activity and confirmed that this region constitutes the dCMP deaminase gene. Northern analysis indicated that the DCD1 mRNA is a 1.15-kb poly(A)+ transcript. The 5' end of the transcript was mapped by primer extension and appears to exhibit heterogeneous termini. Comparison of the amino acid sequence of the T2 bacteriophage dCMP deaminase with that deduced for the yeast enzyme revealed a limited degree of homology which extends over the entire length of the phage polypeptide (188 amino acids) but is confined to the carboxy-terminal half of the yeast protein (312 amino acids). A potential dTTP-binding site in the yeast and phage enzymes was identified by comparison of homologous regions with the amino acid sequences of a variety of other dTTP-binding enzymes. Despite the role of dCMP deaminase in dTTP biosynthesis, Northern analysis revealed that the DCD1 gene is not subject to the same cell cycle-dependent pattern of transcription recently found for the yeast thymidylate synthetase gene (TMP1).


1993 ◽  
Vol 10 (3) ◽  
pp. 279-288 ◽  
Author(s):  
C Guilbaud ◽  
A M Simon ◽  
G Veyssière ◽  
C Jean

ABSTRACT We report the cloning and sequencing of a new cDNA sequence encoding a protein from the mouse seminal vesicle. An open reading frame of 297 nucleotides encoded a protein of 99 amino acids with a calculated molecular mass of 11·454 kDa. The first 21 amino acids constituted a signal peptide followed by 78 amino acids encoding the secreted protein. The cDNA sequence comprised a 3′ untranslated region of 226 bp and the polyadenylation signal AATAAA, 19 bp upstream from the poly(A)+ tail. A high degree of homology was found between this protein and members of the family of seminal vesicle secretory (SVS) proteins, especially rat SVS VI. Northern blot analysis indicated the presence of a 0·7 kb mRNA species in the mRNAs of seminal vesicle tissue. Castration resulted in a marked decrease in the level of the 0·7 kb mRNA encoding the protein, whereas administration of testosterone to castrated males restored the 0·7 kb mRNA.


1996 ◽  
Vol 317 (1) ◽  
pp. 285-290 ◽  
Author(s):  
Kenneth A. CORNELL ◽  
R. W. WINTER ◽  
Paula A. TOWER ◽  
Michael K. RISCOE

Two enzymes in the methionine salvage pathway, 5-methylthioribose kinase (MTR kinase) and 5´-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTA/SAH nucleosidase) were purified from Klebsiellapneumoniae. Chromatography using a novel 5´-(p-aminophenyl)thioadenosine/5-(p-aminophenyl)thioribose affinity matrix allowed the binding and selective elution of each of the enzymes in pure form. The molecular mass, substrate kinetics and N-terminal amino acid sequences were characterized for each of the enzymes. Purified MTR kinase exhibits an apparent molecular mass of 46–50 kDa by SDS/PAGE and S200HR chromatography, and has a Km for MTR of 12.2 μM. Homogeneous MTA/SAH nucleosidase displays a molecular mass of 26.5 kDa by SDS/PAGE, and a Km for MTA of 8.7 μM. Comparisons of the N-terminal sequences obtained for each of the enzymes with protein-sequence databases failed to reveal any significant sequence similarities to known proteins. However, the amino acid sequence obtained for the nucleosidase did share a high degree of sequence similarity with the putative translation product of an open reading frame in Escherichia coli, thus providing a tentative identification of this gene as encoding an MTA/SAH nucleosidase.


2000 ◽  
Vol 66 (6) ◽  
pp. 2631-2635 ◽  
Author(s):  
Naveen Gupta ◽  
Vanga Shiva Reddy ◽  
Sankar Maiti ◽  
Amit Ghosh

ABSTRACT Alkalophilic Bacillus sp. strain NG-27 produces a 42-kDa endoxylanase active at 70°C and at a pH of 8.4. The gene for this endoxylanase was cloned and sequenced. The gene contained one open reading frame of 1,215 bases. An active site characteristic of the family 10 β-glycanases was recognized between amino acids 303 and 313, with the active glutamate at position 310. Though highly thermostable, the enzyme contains no cysteine residue.


2016 ◽  
Vol 14 (2) ◽  
pp. 327-336
Author(s):  
Le Dinh Hung ◽  
Makoto Hirayama ◽  
Kanji Hori

The red algae, Eucheuma denticulatum and Kappaphycus striatum have been widely cultivated in Vietnam as a source of carrageenophytes for industry. In the past, biochemical properties of lectins isolated from these algae has been characterized  and  evaluated extensively. However, gene coding for such lectins isn’t studied yet. In this study, their full length cDNA is amfplified using cDNA ends (RACE) methods. Sequence analysis revealed that cDNA of EDA-2 from E. denticulatum consisted of 1,158 bp containing 103 bp of a 5'untranslated region, 248 bp of 3'untranslated region, and 807 bp of an open reading frame; and cDNA of KSA-2 from K. striatum consisted of 1174 bp containing 94 bp of the 5'-untranslated region, 273 bp of 3'untranslated region and 807 bp of the open reading frame. The cDNA of both EDA-2 and KSA-2 encoded for a polypeptide of 269 amino acids including an initiating methionine, but differed in sequences and molecular masses. The deduced amino acid sequences of EDA-2 and KSA-2 composed of four tandem repeated domains with about 67 amino acids each. The primary structure of EDA-2 and KSA-2 is highly similar to those of the high mannose N-glycan specific lectins including OAA from cyanobacterium, BOA, MBHA and PFA from bacteria, and ESA-2, KAA-1, KAA-2 from macro red algae, which showed strong anti-HIV and anti-influenza virus activities. These results indicate that these cultivated algae are becoming promising materials for production of anti-virus reagent or functional food that can prevent virus infection in future.


1993 ◽  
Vol 294 (2) ◽  
pp. 387-390 ◽  
Author(s):  
L C Au ◽  
S B Lin ◽  
J S Chou ◽  
G W Teh ◽  
K J Chang ◽  
...  

The 1.54 kb cDNA for ancrod, a thrombin-like enzyme, was cloned from a lambda ZAP cDNA library derived from the venom glands of Calloselasma (Agkistrodon) rhodostoma. The cDNA sequence reveals that ancrod is synthesized as a pre-zymogen of 258 amino acids, including a putative secretory peptide of 18 amino acids and a proposed zymogen peptide of 6 amino-acid residues. The amino-acid sequence of the predicted active form of the enzyme exhibits a high degree of sequence similarity to those of mammalian serine proteases (trypsin and pancreatic kallikrein) and other thrombin-like enzymes (batroxobin and flavoxobin). Key amino-acid residues (His43, Asp88, Ser182 and Asp176) that are thought to be involved in the substrate cleavage and in the substrate-binding reaction are conserved. Ancrod contains 13 cysteine residues. Based on alignment with the amino-acid sequences of trypsin and batroxobin, six disulphide bridges can be predicted to be present in the ancrod protein. The existence of a free cysteine, which changes the common sequence surrounding the Ser182 active site from Gly-Asp-Ser-Gly-Gly-Pro to Cys-Asp-Ser-Gly-Gly-Pro, is unusual for a serine protease.


1986 ◽  
Vol 6 (10) ◽  
pp. 921-929 ◽  
Author(s):  
B. Therese Kinsella ◽  
Shawn Doonan

The nucleotide sequence of a 1.46 kb cDNA, selected from a human liver library by the expression of fumarase antigenic determinants, was determined using the dideoxy chain termination method. The cDNA contained an open reading frame extending from the extreme 5′-base and coding for a protein with 468 amino acids. This protein, with the exception of an N-terminal methionine, was identified as mitochondrial fumarase. The protein showed a high degree of identity of structure with the fumarase from Bacillus subtilis (56.6 %) and a fumarase from Escherichia coli (product of the fumC gene, 59.3 %), and a lower degree of identity with the aspartase of E. coli (37.2 %).


Sign in / Sign up

Export Citation Format

Share Document