Nucleotide sequence of a cDNA coding for mitochondrial fumarase from human liver

1986 ◽  
Vol 6 (10) ◽  
pp. 921-929 ◽  
Author(s):  
B. Therese Kinsella ◽  
Shawn Doonan

The nucleotide sequence of a 1.46 kb cDNA, selected from a human liver library by the expression of fumarase antigenic determinants, was determined using the dideoxy chain termination method. The cDNA contained an open reading frame extending from the extreme 5′-base and coding for a protein with 468 amino acids. This protein, with the exception of an N-terminal methionine, was identified as mitochondrial fumarase. The protein showed a high degree of identity of structure with the fumarase from Bacillus subtilis (56.6 %) and a fumarase from Escherichia coli (product of the fumC gene, 59.3 %), and a lower degree of identity with the aspartase of E. coli (37.2 %).

2004 ◽  
Vol 70 (3) ◽  
pp. 1570-1575 ◽  
Author(s):  
Dae Heoun Baek ◽  
Jae Jun Song ◽  
Seok-Joon Kwon ◽  
Chung Park ◽  
Chang-Min Jung ◽  
...  

ABSTRACT A new thermostable dipeptidase gene was cloned from the thermophile Brevibacillus borstelensis BCS-1 by genetic complementation of the d-Glu auxotroph Escherichia coli WM335 on a plate containing d-Ala-d-Glu. Nucleotide sequence analysis revealed that the gene included an open reading frame coding for a 307-amino-acid sequence with an M r of 35,000. The deduced amino acid sequence of the dipeptidase exhibited 52% similarity with the dipeptidase from Listeria monocytogenes. The enzyme was purified to homogeneity from recombinant E. coli WM335 harboring the dipeptidase gene from B. borstelensis BCS-1. Investigation of the enantioselectivity (E) to the P1 and P1′ site of Ala-Ala revealed that the ratio of the specificity constant (k cat /Km ) for l-enantioselectivity to the P1 site of Ala-Ala was 23.4 � 2.2 [E = (k cat /Km ) l,d /(k cat /Km ) d,d ], while the d-enantioselectivity to the P1′ site of Ala-Ala was 16.4 � 0.5 [E = (k cat /Km ) l,d /(k cat /Km ) l,l ] at 55�C. The enzyme was stable up to 55�C, and the optimal pH and temperature were 8.5 and 65�C, respectively. The enzyme was able to hydrolyze l-Asp-d-Ala, l-Asp-d-AlaOMe, Z-d-Ala-d-AlaOBzl, and Z-l-Asp-d-AlaOBzl, yet it could not hydrolyze d-Ala-l-Asp, d-Ala-l-Ala, d-AlaNH2, and l-AlaNH2. The enzyme also exhibited β-lactamase activity similar to that of a human renal dipeptidase. The dipeptidase successfully synthesized the precursor of the dipeptide sweetener Z-l-Asp-d-AlaOBzl.


2005 ◽  
Vol 187 (6) ◽  
pp. 2030-2037 ◽  
Author(s):  
Tomokuni Abe ◽  
Eiji Masai ◽  
Keisuke Miyauchi ◽  
Yoshihiro Katayama ◽  
Masao Fukuda

ABSTRACT Vanillate and syringate are converted into protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by O-demethylases in Sphingomonas paucimobilis SYK-6. PCA is further degraded via the PCA 4,5-cleavage pathway, while 3MGA is degraded through multiple pathways in which PCA 4,5-dioxygenase (LigAB), 3MGA 3,4-dioxygenase (DesZ), and an unidentified 3MGA O-demethylase and gallate dioxygenase are participants. For this study, we isolated a 4.7-kb SmaI fragment that conferred on Escherichia coli the activity required for the conversion of vanillate to PCA. The nucleotide sequence of this fragment revealed an open reading frame of 1,413 bp (ligM), the deduced amino acid sequence of which showed 49% identity with that of the tetrahydrofolate (H4folate)-dependent syringate O-demethylase gene (desA). The metF and ligH genes, which are thought to be involved in H4folate-mediated C1 metabolism, were located just downstream of ligM. The crude LigM enzyme expressed in E. coli converted vanillate and 3MGA to PCA and gallate, respectively, with similar specific activities, and only in the presence of H4folate; however, syringate was not a substrate for LigM. The disruption of ligM led to significant growth retardation on both vanillate and syringate, indicating that ligM is involved in the catabolism of these substrates. The ability of the ligM mutant to transform vanillate was markedly decreased, and this mutant completely lost the 3MGA O-demethylase activity. A ligM desA double mutant completely lost the ability to transform vanillate, thus indicating that desA also contributes to vanillate degradation. All of these results indicate that ligM encodes vanillate/3MGA O-demethylase and plays an important role in the O demethylation of vanillate and 3MGA, respectively.


2000 ◽  
Vol 182 (24) ◽  
pp. 7021-7028 ◽  
Author(s):  
Geun Joong Kim ◽  
Dong Eun Lee ◽  
Hak-Sung Kim

ABSTRACT A superfamily of cyclic amidohydrolases, including dihydropyrimidinase, allantoinase, hydantoinase, and dihydroorotase, all of which are involved in the metabolism of purine and pyrimidine rings, was recently proposed based on the rigidly conserved structural domains in identical positions of the related enzymes. With these conserved domains, two putative cyclic amidohydrolase genes fromEscherichia coli, flanked by related genes, were identified and characterized. From the genome sequence of E. coli, theallB gene and a putative open reading frame, tentatively designated as a hyuA (for hydantoin-utilizing enzyme) gene, were predicted to express hydrolases. In contrast to allB, high-level expression of hyuA in E. coli of a single protein was unsuccessful even under various induction conditions. We expressed HyuA as a maltose binding protein fusion protein and AllB in its native form and then purified each of them by conventional procedures. allB was found to encode a tetrameric allantoinase (453 amino acids) which specifically hydrolyzes the purine metabolite allantoin to allantoic acid. Another open reading frame, hyuA, located near 64.4 min on the physical map and known as a UUG start, coded for d-stereospecific phenylhydantoinase (465 amino acids) which is a homotetramer. As a novel enzyme belonging to a cyclic amidohydrolase superfamily, E. coli phenylhydantoinase exhibited a distinct activity toward the hydantoin derivative with an aromatic side chain at the 5′ position but did not readily hydrolyze the simple cyclic ureides. The deduced amino acid sequence of the novel phenylhydantoinase shared a significant homology (>45%) with those of allantoinase and dihydropyrimidinase, but its functional role still remains to be elucidated. Despite the unclear physiological function of HyuA, its presence, along with the allantoin-utilizing AllB, strongly suggested that the cyclic ureides might be utilized as nutrient sources in E. coli.


2000 ◽  
Vol 66 (12) ◽  
pp. 5480-5483 ◽  
Author(s):  
Sean S. Dineen ◽  
Marite Bradshaw ◽  
Eric A. Johnson

ABSTRACT Boticin B is a heat-stable bacteriocin produced byClostridium botulinum strain 213B that has inhibitory activity against various strains of C. botulinum and related clostridia. The gene encoding the bacteriocin was localized to a 3.0-kb HindIII fragment of an 18.8-kb plasmid, cloned, and sequenced. DNA sequencing revealed the boticin B structural gene,btcB, to be an open reading frame encoding 50 amino acids. A C. botulinum strain 62A transconjugant containing theHindIII fragment inserted into a clostridial shuttle vector expressed boticin B, although at much lower levels than those observed in C. botulinum 213B. To our knowledge, this is the first demonstration and characterization of a bacteriocin from toxigenic group I C. botulinum.


Genetics ◽  
1987 ◽  
Vol 116 (1) ◽  
pp. 67-73
Author(s):  
Tim P Keith ◽  
Margaret A Riley ◽  
Martin Kreitman ◽  
R C Lewontin ◽  
Daniel Curtis ◽  
...  

ABSTRACT We determined the nucleotide sequence of a 4.6-kb Eco RI fragment containing 70% of the rosy locus. In combination with information on the 5′ sequence, the gene has been sequenced in entirety. rosy cDNAs have been isolated and intron/exon boundaries have been determined. We find an open reading frame which spans four exons and would encode a protein of 1335 amino acids. The molecular weight of the encoded protein (xanthine dehydrogenase), based on the amino acid translation, is 146,898 daltons which agrees well with earlier biophysical estimates. Characteristics of the protein are discussed.


1999 ◽  
Vol 181 (15) ◽  
pp. 4499-4504 ◽  
Author(s):  
Frederick M. Hahn ◽  
Anthony P. Hurlburt ◽  
C. Dale Poulter

ABSTRACT Isopentenyl diphosphate isomerase catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In eukaryotes, archaebacteria, and some bacteria, IPP is synthesized from acetyl coenzyme A by the mevalonate pathway. The subsequent isomerization of IPP to DMAPP activates the five-carbon isoprene unit for subsequent prenyl transfer reactions. In Escherichia coli, the isoprene unit is synthesized from pyruvate and glyceraldehyde-3-phosphate by the recently discovered nonmevalonate pathway. An open reading frame (ORF696) encoding a putative IPP isomerase was identified in the E. coli chromosome at 65.3 min. ORF696 was cloned into an expression vector; the 20.5 kDa recombinant protein was purified in three steps, and its identity as an IPP isomerase was established biochemically. The gene for IPP isomerase, idi, is not clustered with other known genes for enzymes in the isoprenoid pathway. E. coli FH12 was constructed by disruption of the chromosomal idi gene with the aminoglycoside 3′-phosphotransferase gene and complemented by the wild-type idi gene on plasmid pFMH33 with a temperature-sensitive origin of replication. FH12/pFMH33 was able to grow at the restrictive temperature of 44°C and FH12 lacking the plasmid grew on minimal medium, thereby establishing thatidi is a nonessential gene. Although theV max of the bacterial protein was 20-fold lower than that of its yeast counterpart, the catalytic efficiencies of the two enzymes were similar through a counterbalance inKm s. The E. coli protein requires Mg2+ or Mn2+ for activity. The enzyme contains conserved cysteine and glutamate active-site residues found in other IPP isomerases.


1999 ◽  
Vol 181 (23) ◽  
pp. 7256-7265 ◽  
Author(s):  
Birgitta Esberg ◽  
Hon-Chiu Eastwood Leung ◽  
Ho-Ching Tiffany Tsui ◽  
Glenn R. Björk ◽  
Malcolm E. Winkler

ABSTRACT The tRNA of the miaB2508::Tn10dCm mutant of Salmonella typhimurium is deficient in the methylthio group of the modified nucleosideN 6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A37). By sequencing, we found that the Tn10dCm of this strain had been inserted into thef474 (yleA) open reading frame, which is located close to the nag locus in both S. typhimurium and Escherichia coli. By complementation of the miaB2508::Tn10dCm mutation with a minimal subcloned f474 fragment, we showed thatf474 could be identified as the miaB gene, which is transcribed in the counterclockwise direction on the bacterial chromosome. Transcriptional studies revealed two promoters upstream ofmiaB in E. coli and S. typhimurium. A Rho-independent terminator was identified downstream of themiaB gene, at which the majority (96%) of themiaB transcripts terminate in E. coli, showing that the miaB gene is part of a monocistronic operon. A highly conserved motif with three cysteine residues was present in MiaB. This motif resembles iron-binding sites in other proteins. Only a weak similarity to an AdoMet-binding site was found, favoring the idea that the MiaB protein is involved in the thiolation step and not in the methylating reaction of ms2i(o)6A37 formation.


1987 ◽  
Vol 7 (11) ◽  
pp. 3937-3946
Author(s):  
J C Meade ◽  
J Shaw ◽  
S Lemaster ◽  
G Gallagher ◽  
J R Stringer

An oligonucleotide probe was used to clone a cation-transporting ATPase gene from the genome of Leishmania donovani. The nucleotide sequence of the gene contained a 2,922-base-pair open reading frame that was predicted to encode a 107,406-dalton protein composed of 974 amino acids. The predicted L. donovani protein contained all the structural and functional domains expected to be present in a cation-transporting ATPase of the aspartyl phosphate class. The nucleotide sequence encoding the ATPase gene was duplicated in tandem in the parasite genome. Partial sequenation of the second member of the tandem repeat, which lay 2 kilobase pairs downstream of the ATPase gene, indicated that it was either identical to the first gene or very closely related to it. RNA homologous to either the ATPase gene or its adjacent relative was 5 kilobases in size and was approximately equally abundant in both promastigote and amastigote forms of the organism.


2012 ◽  
Vol 58 (1) ◽  
pp. 112-115 ◽  
Author(s):  
Zhenwen Zhou ◽  
Ruili Guan ◽  
Yiyu Yang ◽  
Ling Chen ◽  
Jie Fu ◽  
...  

New Delhi metallo-β-lactamase-1 (NDM-1) is a novel type of metallo-β-lactamase (MBL) responsible for bacterial resistance to β-lactam antibiotics. Acinetobacter junii was previously shown to possess a MBL phenotype; however, the genes responsible for this phenotype were not identified. In this study, we reported the identification of NDM-1 gene in a clinical isolate of A. junii from a child patient in China, which was resistant to all β-lactams except aztreonam but sensitive to aminoglycosides and quinolones. The cloned NDM-1 gene contained an open reading frame of 813 bp and had a nucleotide sequence 99.9% identical (812/813) to reported NDM-1 genes carried by Acinetobacter baumannii , Enterococcus faecium , Escherichia coli , and Klebsiella pneumoniae . Recombinant NDM-1 protein was successfully expressed in E. coli BL21, and antibiotic sensitivities of the NDM-1-producing E. coli were largely similar to the A. junii 1454 isolate. The findings of this study raise attention to the emergence and spread of NDM-1-carrying bacteria in China.


Sign in / Sign up

Export Citation Format

Share Document