scholarly journals A maedi–visna virus strain K1514 receptor gene is located in sheep chromosome 3p and the syntenic region of human chromosome 2

2002 ◽  
Vol 83 (7) ◽  
pp. 1759-1764 ◽  
Author(s):  
Isidro Hötzel ◽  
William P. Cheevers

The maedi–visna lentivirus (MVV) induces encephalitis, interstitial pneumonia, arthritis and mastitis in sheep. While some MVV strains can enter cells of ruminant species only, others can enter cells from many species, including human, but not Chinese hamster cells. However, the identity of the receptor(s) used by MVV for entry is unknown. The MVV-K1514 receptor gene was localized in sheep and human chromosomes using hamster×sheep and hamster×human hybrid cell lines. Based on entry by a vector pseudotyped with the MVV-K1514 envelope, the MVV-K1514 receptor gene was mapped to sheep chromosome 3p and to a region of human chromosome 2 (2p25>q13), which has conserved synteny with sheep chromosome 3p. These regions do not include any known lentivirus receptor or coreceptor gene, indicating that MVV-K1514 uses a new lentivirus receptor to infect human cells.


2009 ◽  
Vol 26 (2) ◽  
pp. 85-90 ◽  
Author(s):  
T E Broad ◽  
D J Burkin ◽  
L M Cambridge ◽  
C Jones ◽  
P E Lewis ◽  
...  


1981 ◽  
Vol 23 (3) ◽  
pp. 505-511 ◽  
Author(s):  
L. J. Donald ◽  
H. S. Wang ◽  
N. J. Holliday ◽  
J. L. Hamerton

Human fibroblast cells were exposed to 0, 10, 20, or 40 Grays of gamma rays and then fused with unirradiated Chinese hamster cells deficient in HPRT. THAG selection system was used to ensure that only hybrid cell lines could survive. The time of appearance of pickable hybrid colonies and the frequency of dishes without any colonies were related to radiation dose. As the radiation dose increased, there was a positive correlation with frequency of cells with abnormal nuclei and a negative correlation with frequency of human chromosomes. Additionally, the hamster chromosomes had damage similar to that produced by radiation; the frequency of damaged hamster chromosomes was positively correlated with radiation dose.



1986 ◽  
Vol 6 (10) ◽  
pp. 3428-3432
Author(s):  
D Karentz ◽  
J E Cleaver

Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia.



1983 ◽  
Vol 3 (5) ◽  
pp. 761-772
Author(s):  
S Chang ◽  
J J Wasmuth

Starting with hybrid cell lines between a Chinese hamster cell EmtA mutant and a Chinese hamster cell EmtB mutant, we have constructed cell lines that are homozygous for mutant alleles at both the emtA locus and the emtB locus, by using a two-step segregation protocol. The EmtA EmtB double mutants are approximately 10-fold more resistant to emetine inhibition than either of the parental mutants. Having both the EmtA mutation and the EmtB mutation expressed in the same cell also results in a level of resistance to cryptopleurine that is significantly higher than a simple additive effect of the two mutations alone. Analysis of ribosomal proteins by two-dimensional polyacrylamide gel electrophoresis demonstrated that a parental hybrid and a first-step segregant, which has lost the wild-type emtA allele, synthesize both a normal and an altered form of ribosomal protein S14, whereas an EmtA EmtB double mutant synthesizes only the altered form of this ribosomal protein. This result confirms that the emtB locus is the structural gene for ribosomal protein S14. Our results also suggest that the products of the emtA and emtB loci interact directly, indicating that the emtA locus, like the emtB locus, encodes a component of the ribosome.



1982 ◽  
Vol 2 (10) ◽  
pp. 1220-1228
Author(s):  
S Dana ◽  
J J Wasmuth

Chinese hamster-human interspecific hybrid cells, which contain human chromosome 5 and express four genes linked on that chromosome, were subjected to selective conditions requiring them to retain one of the four linked genes, leuS (encoding leucyl-tRNA synthetase), but lose another, either emtB (encoding ribosomal protein S14) or chr. Cytogenetic and biochemical analyses of spontaneous segregants isolated by using these unique selective pressures have enabled us to determine the order and regional location of the leuS, hexB, emtB, and chr genes on human chromosome 5. These segregants arise primarily by terminal deletions of various portions of the long arm of chromosome 5. Our results indicate that the order of at least three of these genes is the same on human chromosome 5 and Chinese hamster chromosome 2. Thus, there appears to be extensive homology between Chinese hamster chromosome 2 and human chromosome 5, which represents an extreme example of the conservation of gene organization between very divergent mammalian species. In addition, these hybrids and selective conditions provide a very simple and quantitative means to assess the potency of various agents suspected of inducing gross chromosomal damage.



1973 ◽  
Vol 12 (3) ◽  
pp. 809-830
Author(s):  
P. W. ALLDERDICE ◽  
O. J. MILLER ◽  
P. L. PEARSON ◽  
G. KLEIN ◽  
H. HARRIS

Chromosome studies were done on 18 somatic hybrid cell lines produced by fusing cells of the mouse A 9 line with cells of the human Daudi lymphoblastoid line derived from a patient with Burkitt's lymphoma. The human chromosomes were identified by their quinacrine fluorescent banding patterns. In one hybrid line the human chromosomes were identified also by the centromeric heterochromatin staining technique. Every human chromosome was identified in one or more of the hybrid lines. Some lines were homogeneous in terms of their human chromosome content, while others were quite heterogeneous. Detailed analysis of the A 9 chromosomes in one hybrid line showed very few changes in comparison with the chromosome constitution of the average A 9 cell.



1982 ◽  
Vol 2 (10) ◽  
pp. 1220-1228 ◽  
Author(s):  
S Dana ◽  
J J Wasmuth

Chinese hamster-human interspecific hybrid cells, which contain human chromosome 5 and express four genes linked on that chromosome, were subjected to selective conditions requiring them to retain one of the four linked genes, leuS (encoding leucyl-tRNA synthetase), but lose another, either emtB (encoding ribosomal protein S14) or chr. Cytogenetic and biochemical analyses of spontaneous segregants isolated by using these unique selective pressures have enabled us to determine the order and regional location of the leuS, hexB, emtB, and chr genes on human chromosome 5. These segregants arise primarily by terminal deletions of various portions of the long arm of chromosome 5. Our results indicate that the order of at least three of these genes is the same on human chromosome 5 and Chinese hamster chromosome 2. Thus, there appears to be extensive homology between Chinese hamster chromosome 2 and human chromosome 5, which represents an extreme example of the conservation of gene organization between very divergent mammalian species. In addition, these hybrids and selective conditions provide a very simple and quantitative means to assess the potency of various agents suspected of inducing gross chromosomal damage.



1986 ◽  
Vol 6 (10) ◽  
pp. 3428-3432 ◽  
Author(s):  
D Karentz ◽  
J E Cleaver

Xeroderma pigmentosum (XP) is an autosomal recessive human disease, characterized by an extreme sensitivity to sunlight, caused by the inability of cells to repair UV light-induced damage to DNA. Cell fusion was used to transfer fragments of Chinese hamster ovary (CHO) chromosomes into XP cells. The hybrid cells exhibited UV resistance and DNA repair characteristics comparable to those expressed by CHO cells, and their DNA had greater homology with CHO DNA than did the DNA from XP cells. Control experiments consisted of fusion of irradiated and unirradiated XP cells and repeated exposure of unfused XP cells to UV doses used for hybrid selection. These treatments did not result in an increase in UV resistance, repair capability, or homology with CHO DNA. The hybrid cell lines do not, therefore, appear to be XP revertants. The establishment of these stable hybrid cell lines is an initial step toward identifying and cloning CHO DNA repair genes that complement the XP defect in human cells. The method should also be applicable to cloning genes for other diseases, such as ataxia-telangiectasia and Fanconi's anemia.





2000 ◽  
Vol 81 (12) ◽  
pp. 2919-2927 ◽  
Author(s):  
J. W. Lyall ◽  
N. Solanky ◽  
L. S. Tiley

The distribution of receptors for maedi–visna virus (MVV) was studied using co-cultivation assays for virus fusion and PCR-based assays to detect the formation of virus-specific reverse transcription products after virus entry. Receptors were present on cell lines from human, monkey, mouse, chicken, quail, hamster and ovine sources. Thus, the distribution of the receptor for MVV is more similar to that of the amphotropic type C retroviruses than to that of other lentiviruses. The receptor was sensitive to proteolysis by papain, but was resistant to trypsin. Chinese hamster ovary (CHO) and lung cells (V79 TOR) did not express functional receptors for MVV. The receptor was mapped to either chromosome 2 or 4 of the mouse using somatic cell hybrids. This allowed several candidates (e.g. MHC-II, CXCR4) that have been proposed for the MVV receptor to be excluded.



Sign in / Sign up

Export Citation Format

Share Document