scholarly journals Microbacterium enclense sp. nov., isolated from sediment sample

2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2064-2070 ◽  
Author(s):  
Rahul R. Mawlankar ◽  
Poonam Mual ◽  
Vidya V. Sonalkar ◽  
Meghana N. Thorat ◽  
Ashish Verma ◽  
...  

A novel bacterium (strain NIO-1002T) belonging to the genus Microbacterium was isolated from a marine sediment sample in Chorao Island, Goa Province, India. Its morphology, physiology, biochemical features and 16S rRNA gene sequence were characterized. Cells of this strain were Gram-stain-positive, non-motile, non-spore-forming rods that formed yellow-pigmented colonies. It grew in 0–12 % (w/v) NaCl and at 25–37 °C, with optimal growth at 30 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NIO-1002T is associated with members of the genus Microbacterium, with highest sequence similarity with Microbacterium hominis CIP 105731T (98.1 %) and Microbacterium testaceum KCTC 9103T (98.0 %). Within the phylogenetic tree, this novel strain shared a branching point with M. hominis CIP 105731T. The DNA G+C content was 66.5 mol% and DNA–DNA hybridization relatedness between NIO-1002T, M. hominis CIP 105731T and M. testaceum KCTC 9103T was 39.0 ± 2.0 % and 41.0 ± 2.0 %, respectively. The major fatty acids were ai-C15 : 0, i-C16 : 0 and ai-C17 : 0 and the diamino acid in the cell-wall peptidoglycan of NIO-1002T was lysine. Data obtained from DNA–DNA hybridization and chemotaxonomic phenotypic analysis support the conclusion that strain NIO-1002T represents a novel species within the genus Microbacterium. The name Microbacterium enclense sp. nov. is proposed, with NIO-1002T ( = NCIM 5454T = DSM 25125T = CCTCC AB 2011120T) as the type strain.

2011 ◽  
Vol 61 (2) ◽  
pp. 399-403 ◽  
Author(s):  
Yun-Ji Kim ◽  
Seong Woon Roh ◽  
Mi-Ja Jung ◽  
Min-Soo Kim ◽  
Eun-Jin Park ◽  
...  

A novel bacterium (strain M4-8T) belonging to the genus Microbacterium was isolated from salted turban shell, which is a traditional fermented food in Korea. Its morphology, physiology, biochemical features and 16S rRNA gene sequence were characterized. Cells of this strain were Gram-positive, non-motile, non-spore-forming rods that formed yellow-pigmented colonies. It grew in 0–8 % (w/v) NaCl and at 15–37 °C, with optimal growth occurring in 1 % (w/v) NaCl and at 30 °C. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain M4-8T is associated with members of the genus Microbacterium. Within the phylogenetic tree, this novel strain shared a branching point with Microbacterium hominis IFO 15708T (97.8 % similarity). The DNA G+C content was 71.3 mol% and DNA–DNA hybridization experiments showed a low level (<29 %) of DNA–DNA relatedness between M4-8T and its closest relatives. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0 and the major cell-wall diamino acid was ornithine. Data obtained from DNA–DNA hybridization and chemotaxonomic phenotypic analysis support the conclusion that strain M4-8T represents a novel species within the genus Microbacterium. The name Microbacterium mitrae sp. nov. is proposed, with M4-8T (=KACC 21129T =JCM 16363T) as the type strain.


2011 ◽  
Vol 61 (2) ◽  
pp. 286-289 ◽  
Author(s):  
Ji-Hyun Yun ◽  
Seong Woon Roh ◽  
Mi-Ja Jung ◽  
Min-Soo Kim ◽  
Eun-Jin Park ◽  
...  

Strain 104T was isolated from a traditional salt-fermented seafood in Korea. It was a Gram-positive, non-motile, coccus-shaped bacterium. It formed lemon–yellow, opaque colonies that were circular with entire margins. Optimal growth occurred at 30–37 °C, pH 7–8 and in the presence of 0–2 % (w/v) NaCl. Phylogenetic analysis of 16S rRNA gene sequences from strain 104T and reference species of the genus Kocuria indicated that strain 104T formed an independent line. The G+C content of the chromosomal DNA was 60.6 mol%. MK-7 was the major menaquinone and the predominant fatty acids were anteiso-C15 : 0 (76.7 %), anteiso-C17 : 0 (10.9 %) and iso-C16 : 0 (4.5 %). Strain 104T was most closely related to Kocuria rhizophila TA68T (98.9 % 16S rRNA gene sequence similarity). The DNA–DNA hybridization value between strain 104T and K. rhizophila TA68T was 14.1±3.4 %. On the basis of this polyphasic taxonomic analysis, strain 104T appears to represent a novel species in the genus Kocuria. The name Kocuria salsicia sp. nov. is proposed. The type strain is 104T (=KACC 21128T=JCM 16361T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1552-1557 ◽  
Author(s):  
Na-Ri Shin ◽  
Tae Woong Whon ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Young-Ok Kim ◽  
...  

Two strains, designated TW92T and TW93, were isolated from marine sediment collected from the south coast of Korea. Cells of both strains were Gram-staining-negative, coccus-shaped, aerobic, motile and catalase- and oxidase-positive. Strain TW92T grew optimally in the presence of 2 % (w/v) NaCl (range 1–5 %) while strain TW93 grew optimally in the presence of 1 % (w/v) NaCl (range 0–12 %), and both strains had an optimal growth temperature of 30 °C (range 4–37 °C). Strains TW92T and TW93 had the same optimum pH (pH 7), but differed in their ability to grow at pH 10. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strains TW92T and TW93 were most closely related to Oceanisphaera donghaensis BL1T, with 98.8 % and 98.7 % similarity, respectively. Pairwise similarity between the 16S rRNA gene sequences of strains TW92T and TW93 was 99.9 %. The major fatty acids of both strains were summed features 3 (comprising C16 : 1ω7c/iso-C15 2-OH), C16 : 0 and C18 : 1ω7c. Both strains possessed the ubiquinone Q-8 as the predominant respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the polar lipids. The genomic DNA G+C contents of strains TW92T and TW93 were 58.5 and 59.6 mol%, respectively. Genomic relatedness values based on DNA–DNA hybridization of strains TW92T and TW93 with related species were below 47 % and 31 %, respectively. DNA–DNA hybridization values between strains TW92T and TW93 were above 85 %. On the basis of a taxonomic study using polyphasic analysis, it is proposed that the two isolates represent a novel species, Oceanisphaera sediminis sp. nov., with strain TW92T ( = KACC 15117T = JCM 17329T) as the type strain and strain TW93 ( = KACC 15118 = JCM 17330) as an additional strain.


2010 ◽  
Vol 60 (10) ◽  
pp. 2267-2271 ◽  
Author(s):  
Shuang Wang ◽  
Qian Yang ◽  
Zhi-Hua Liu ◽  
Lei Sun ◽  
Dan Wei ◽  
...  

A haloalkaliphilic archaeon, strain JX313T, was isolated from a saline–alkaline soil from Daqing, Heilongjiang Province, China. Its morphological, physiological and biochemical features and 16S rRNA gene sequence were determined. Colonies of the strain were orange–red and cells were non-motile cocci and Gram-stain-variable. The strain required at least 1.7 M NaCl for growth, with optimal growth occurring in 2.0–2.5 M NaCl. Growth was observed at 20–50 °C and pH 8.0–10.5, with optimal growth at 35 °C and pH 10.0. The G+C content of its genomic DNA was 59.3 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain JX313T is associated with the genera Haloterrigena and Natrinema and is most closely related to Haloterrigena salina XH-65T (96.2 % sequence similarity) and Haloterrigena hispanica FP1T (96.2 %). DNA–DNA hybridization experiments revealed that the relatedness of strain JX313T to type strains of related species of the genus Haloterrigena or Natrinema was less than 50 %. Furthermore, the cellular polar lipids of strain JX313T, identified as phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and mannose-2,6-disulfate (1→2)-glucose glycerol diether (S2-DGD), were consistent with the polar lipid characteristics of the genus Haloterrigena. Therefore, phylogenetic analysis, phenotypic assessment and chemotaxonomic data showed that JX313T represents a novel species within the genus Haloterrigena, for which the name Haloterrigena daqingensis sp. nov. is proposed. The type strain is JX313T (=CGMCC 1.8909T =NBRC 105739T).


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2023-2028 ◽  
Author(s):  
Munusamy Madhaiyan ◽  
Selvaraj Poonguzhali ◽  
Venkatakrishnan Sivaraj Saravanan ◽  
Soon-Wo Kwon

A novel, yellow-pigmented bacterium, designated strain MO64T, was isolated from the rhizoplane of field-grown soybean, collected from an experimental plot at Coimbatore, India. Cells were Gram-reaction-negative, motile, non-spore-forming rods that produced yellow-pigmented colonies on R2A agar. Phylogenetic analysis, based on 16S rRNA gene sequences, showed that strain MO64T belonged to the genus Rhodanobacter . Strain MO64T was related most closely to Rhodanobacter ginsengisoli GR17-7T (98.0 % 16S rRNA gene sequence similarity), Rhodanobacter spathiphylli B39T (97.9 %), Rhodanobacter panaciterrae LnR5-47T (97.7 %), Rhodanobacter terrae GP18-1T (97.6 %), Rhodanobacter soli DCY45T (97.3 %) and Rhodanobacter caeni MJ01T (97.2 %); levels of similarity to the type strains of all other recognized species of the genus Rhodanobacter were less than 97.0 %. Chemotaxonomic data (Q-8 as the predominant ubiquinone, and iso-C16 : 0, iso-C15 : 0, C17 : 0 cyclo, iso-C17 : 1ω9c, iso-C17 : 0 and iso-C11 : 0 as the major fatty acids) also supported the affiliation of strain MO64T with the genus Rhodanobacter . The G+C content of the genomic DNA was 64 mol%. The results of DNA–DNA hybridization and phenotypic analysis showed that strain MO64T can be distinguished from all known species of the genus Rhodanobacter and therefore represents a novel species of the genus, for which the name Rhodanobacter glycinis sp. nov. is proposed. The type strain is MO64T ( = ICMP 17626T = NBRC 105007T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2357-2364 ◽  
Author(s):  
Nupur ◽  
Naga Radha Srinivas Tanuku ◽  
Takaichi Shinichi ◽  
Anil Kumar Pinnaka

A novel brown-coloured, Gram-negative-staining, rod-shaped, motile, phototrophic, purple sulfur bacterium, designated strain AK40T, was isolated in pure culture from a sediment sample collected from Coringa mangrove forest, India. Strain AK40T contained bacteriochlorophyll a and carotenoids of the rhodopin series as major photosynthetic pigments. Strain AK40T was able to grow photoheterotrophically and could utilize a number of organic substrates. It was unable to grow photoautotrophically and did not utilize sulfide or thiosulfate as electron donors. Thiamine and riboflavin were required for growth. The dominant fatty acids were C12 : 0, C16 : 0, C18 : 1ω7c and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The polar lipid profile of strain AK40T was found to contain diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and eight unidentified lipids. Q-10 was the predominant respiratory quinone. The DNA G+C content of strain AK40T was 65.5 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represented a member of the family Chromatiaceae within the class Gammaproteobacteria. 16S rRNA gene sequence analysis indicated that strain AK40T was closely related to Phaeochromatium fluminis, with 95.2 % pairwise sequence similarity to the type strain; sequence similarity to strains of other species of the family was 90.8–94.8 %. Based on the sequence comparison data, strain AK40T was positioned distinctly outside the group formed by the genera Phaeochromatium, Marichromatium, Halochromatium, Thiohalocapsa, Rhabdochromatium and Thiorhodovibrio. Distinct morphological, physiological and genotypic differences from previously described taxa supported the classification of this isolate as a representative of a novel species in a new genus, for which the name Phaeobacterium nitratireducens gen. nov., sp. nov. is proposed. The type strain of Phaeobacterium nitratireducens is AK40T ( = JCM 19219T = MTCC 11824T).


2007 ◽  
Vol 57 (9) ◽  
pp. 1966-1969 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

A Gram-negative, rod-shaped bacterium, IG8T, was isolated from seawater off the Sanriku coast, Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IG8T represented a separate lineage within the genus Loktanella; the highest 16S rRNA gene sequence similarity values were found with the type strains of Loktanella salsilacus (98.6 %) and Loktanella fryxellensis (98.4 %). DNA–DNA hybridization values between strain IG8T and the type strains of L. salsilacus (27.9–36.1 %) and L. fryxellensis (11.3–31.0 %) were clearly below 70 %, the generally accepted limit for species delineation. The DNA G+C content of strain IG8T was 66.3 mol%. On the basis of DNA–DNA hybridization, some biochemical characteristics and 16S rRNA gene sequence comparison, it is proposed that the isolate represents a novel species, Loktanella atrilutea sp. nov. The type strain is IG8T (=IAM 15450T=NCIMB 14280T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1735-1740 ◽  
Author(s):  
Masataka Satomi ◽  
Myron T. La Duc ◽  
Kasthuri Venkateswaran

Thirteen strains of a novel spore-forming, Gram-positive, mesophilic heterotrophic bacterium were isolated from spacecraft surfaces (Mars Odyssey Orbiter) and assembly-facility surfaces at the Jet Propulsion Laboratory in California and the Kennedy Space Center in Florida. Phylogenetic analysis of 16S rRNA gene sequences has placed these novel isolates within the genus Bacillus, the greatest sequence similarity (99.9 %) being found with Bacillus pumilus. However, these isolates share a mere 91.2 % gyrB sequence similarity with Bacillus pumilus, rendering their 16S rRNA gene-derived relatedness suspect. Furthermore, DNA–DNA hybridization showed only 54–66 % DNA relatedness between the novel isolates and strains of B. pumilus. rep-PCR fingerprinting and previously reported matrix-assisted laser desorption/ionization time-of-flight mass spectrometry protein profiling clearly distinguished these isolates from B. pumilus. Phenotypic analyses also showed some differentiation between the two genotypic groups, although the fatty acid compositions were almost identical. The polyphasic taxonomic studies revealed distinct clustering of the tested strains into two distinct species. On the basis of phenotypic characteristics and the results of phylogenetic analyses of 16S rRNA and gyrB gene sequences, repetitive element primer-PCR fingerprinting and DNA–DNA hybridization, the 13 isolates represent a novel species of the genus Bacillus, for which the name Bacillus safensis sp. nov. is proposed. The type strain is FO-36bT (=ATCC BAA-1126T=NBRC 100820T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2684-2689 ◽  
Author(s):  
V. Venkata Ramana ◽  
P. Shalem Raj ◽  
L. Tushar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains (JA643T and JA755) of Gram-stain-negative, facultatively anaerobic phototrophic, bacteria capable of growth at low temperatures (10–15 °C) were isolated from freshwater streams from different geographical regions of India. Both strains contain bacteriochlorophyll a and carotenoids of the spirilloxanthin series. Phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid (PL), unidentified amino lipids (AL1–AL6, AL9) and an unidentified lipid (L1) were the polar lipids present in both strains. The major cellular fatty acid was C18 : 1ω7c (76–79 % of the total). Bacteriohopane derivatives (BHD1,2), unidentified hopanoids (UH1–5), diplopterol (DPL) and diploptene (DPE) were the major hopanoids of both strains. The DNA G+C content was 64.2–64.5 mol%. 16S rRNA gene sequence-based phylogenetic analysis showed that both strains are closely related to the genus Rhodomicrobium and clustered with Rhodomicrobium vannielii DSM 162T (99 % sequence similarity). However, both strains exhibited only 46.1 % DNA–DNA hybridization with R. vannielii DSM 162T. Strains JA643T and JA755 shared >99 % 16S rRNA gene sequence similarity and were >85 % related on the basis of DNA–DNA hybridization; they are therefore considered to represent a novel species in the genus Rhodomicrobium , for which the name Rhodomicrobium udaipurense sp. nov. is proposed. The type strain is JA643T ( = KCTC 15219T = NBRC 109057T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2851-2857 ◽  
Author(s):  
Jina Lee ◽  
Tae Woong Whon ◽  
Na-Ri Shin ◽  
Seong Woon Roh ◽  
Jandi Kim ◽  
...  

A slightly halophilic, Gram-negative, strictly aerobic, non-motile rod, designated TW15T, was isolated from an ark clam in South Korea. Growth occurred at 10–37 °C, with 1–5 % (w/v) NaCl and at pH 7.0–10.0. Optimal growth occurred at 25–30 °C, with 2 % (w/v) NaCl and at pH 8.0. Strain TW15T exhibited both oxidase and catalase activities. The major fatty acids of strain TW15T were summed feature 8 (consisting of C18 : 1ω7c and/or C18 : 1ω6c) and 11-methyl C18 : 1ω7c. The predominant isoprenoid quinone was ubiquinone-10 (Q-10). The polar lipids of strain TW15T comprised phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid, an unidentified aminolipid and five unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain TW15T was most closely related to Ruegeria lacuscaerulensis DSM 11314T (98.0 % 16S rRNA gene sequence similarity). DNA–DNA relatedness with closely related strains was <52±3 %. The DNA G+C content was 55.7 mol%. On the basis of phenotypic, genotypic and phylogenetic data, strain TW15T represents a novel species of the genus Ruegeria , for which the name Ruegeria conchae sp. nov. is proposed. The type strain is TW15T ( = KACC 15115T  = JCM 17315T).


Sign in / Sign up

Export Citation Format

Share Document