scholarly journals Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum

2010 ◽  
Vol 60 (2) ◽  
pp. 331-337 ◽  
Author(s):  
Lorena C. Garcia ◽  
Eustoquio Martínez-Molina ◽  
Martha E. Trujillo

A novel actinomycete, designated strain GUI 15T, isolated from the root nodules of a Pisum sativum plant was characterized taxonomically by using a polyphasic approach. The 16S rRNA gene sequence of strain GUI 15T showed highest similarity to Micromonospora pattaloongensis TJ2-2T (98.7 %) and Polymorphospora rubra TT 97-42T (98.5 %). Phylogenetic analysis based on the gyrase B gene also supported the close relationship of these three strains, but indicated that strain GUI 15T should be assigned to the genus Micromonospora. Chemotaxonomic results confirmed the position of the isolate in the genus Micromonospora, but revealed differences at the species level. The novel strain could be distinguished from recognized Micromonospora species by using a combination of physiological and biochemical tests. Based on these observations, strain GUI 15T is considered to represent a novel species of the genus Micromonospora, for which the name Micromonospora pisi sp. nov. is proposed. The type strain is GUI 15T (=DSM 45175T=LMG 24546T).

2006 ◽  
Vol 56 (10) ◽  
pp. 2381-2385 ◽  
Author(s):  
Martha E. Trujillo ◽  
Reiner M. Kroppenstedt ◽  
Peter Schumann ◽  
Lorena Carro ◽  
Eustoquio Martínez-Molina

An actinomycete strain, NAR01T, was isolated from root nodules of a Coriaria plant. The 16S rRNA gene sequence of strain NAR01T showed most similarity to the type strains of Micromonospora endolithica (98.94 %) and Micromonospora chersina (98.4 %). The chemotaxonomic results obtained confirmed the taxonomic position of the isolate within the genus Micromonospora, and revealed differences at the species level. Physiological and biochemical tests showed that strain NAR01T could be clearly distinguished from its closest phylogenetic neighbours, while DNA–DNA hybridization results indicated that the isolate represents a novel species. On the basis of these results, strain NAR01T (=DSM 44875T=LMG 23557T) is proposed as the type strain of the novel species Micromonospora coriariae sp. nov.


1994 ◽  
Vol 40 (4) ◽  
pp. 313-318 ◽  
Author(s):  
M. Sajjad Mirza ◽  
Dittmar Hahn ◽  
Svetlana V. Dobritsa ◽  
Antoon D. L. Akkermans

Part of the 16S rRNA gene was amplified directly from uncultured endophyte populations within the root nodules of Datisca cannabina and three strains isolated from nodules of Alnus glutinosa (AgKG′84/4), Coriaria nepalensis (Cn3), and D. cannabina (Dc2). Sequence comparison based on 930 nucleotides indicated that the endophyte of D. cannabina nodules belongs to the genus Frankia and is highly related to the endophyte of C. nepalensis root nodules. The relatedness of the endophytes of C. nepalensis and D. cannabina nodules was also reflected by closely related nifH sequences amplified from the nodules. 16S rRNA sequence analysis of the noninfective strains obtained from both D. cannabina (Dc2) and C. nepalensis (Cn3) nodules also revealed the close relationship of these strains to the genus Frankia.Key words: nitrogen fixation, Frankia, 16S rRNA, nifH.


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2517-2521 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Kyung-Sook Whang

The taxonomic position of strain JL-22T, isolated from litter of a bamboo (Sasa borealis) forest, was determined using a polyphasic approach. The organism had phenotypic and morphological properties consistent with it being a member of the genus Streptomyces . Phylogenetic analysis of the 16S rRNA gene sequence showed that strain JL-22T was closely related to Streptomyces prunicolor NRRL B-12281T (99.2 %), Streptomyces galilaeus JCM 4757T (99.0 %) and Streptomyces chartreusis NBRC 12753T (99.0 %). However, the results of DNA–DNA hybridization and physiological and biochemical tests showed that strain JL-22T could be differentiated from its closest phylogenetic relatives both genotypically and phenotypically. Based on phenotypic and genotypic data, strain JL-22T represents a novel species of the genus Streptomyces , for which the name Streptomyces graminifolii sp. nov. is proposed. The type strain is JL-22T ( = KACC 17180T = NBRC 109806T).


2010 ◽  
Vol 60 (1) ◽  
pp. 229-233 ◽  
Author(s):  
Xuesong Luo ◽  
Zhang Wang ◽  
Jun Dai ◽  
Lei Zhang ◽  
Jun Li ◽  
...  

Two Gram-staining-negative, rod-shaped, non-spore-forming bacterial strains, 1-2T and 1-4 were isolated from dry riverbed soil collected from the Xietongmen area of Tibet, China. On the basis of 16S rRNA gene sequence similarity, the novel strains were shown to belong to the genus Pedobacter, sharing <95 % sequence similarity with all recognized species of the genus Pedobacter. The major respiratory quinone was MK-7 and the predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (comprising iso-C16 : 1 ω7c and/or C16 : 1 ω6c). The DNA G+C contents were 37.2–37.6 mol%. Chemotaxonomic data supported the affiliation of the two new isolates to the genus Pedobacter and the results of physiological and biochemical tests confirmed that the new strains differed significantly from the recognized species of the genus Pedobacter. Therefore, the new isolates represent a novel species within the genus Pedobacter, for which the name Pedobacter glucosidilyticus sp. nov. is proposed. The type strain is 1-2T (=CCTCC AB 206110T=KCTC 22438T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2529-2533 ◽  
Author(s):  
Ho-Bin Kim ◽  
Min-Ju Park ◽  
Hee-Chan Yang ◽  
Dong-Shan An ◽  
Hai-Zhu Jin ◽  
...  

A bacterial strain (designated KMY03T) that possesses β-glucosidase activity was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. The bacterium was found to comprise Gram-negative, rod-shaped, motile cells with unipolar polytrichous flagella. On the basis of 16S rRNA gene sequence similarity, strain KMY03T was shown to belong to the family Burkholderiaceae of the Betaproteobacteria, being most closely related to Burkholderia caledonica LMG 19076T (97.8 %), Burkholderia terricola LMG 20594T (97.5 %), Burkholderia xenovorans LMG 21463T (97.4 %) and Burkholderia phytofirmans LMG 22146T (97.3 %). Chemotaxonomic data (major ubiquinone, Q-8; major fatty acids, C17 : 0 cyclo, C16 : 0, C19 : 0 cyclo ω8c and summed feature 2) supported the affiliation of the novel strain with the genus Burkholderia. The results of DNA–DNA hybridizations and physiological and biochemical tests allowed the strain to be differentiated genotypically and phenotypically from Burkholderia species with validly published names. On the basis of these data, strain KMY03T represents a novel species of the genus Burkholderia, for which the name Burkholderia ginsengisoli sp. nov. is proposed. The type strain is KMY03T (=KCTC 12389T=NBRC 100965T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3419-3426 ◽  
Author(s):  
Sofie E. De Meyer ◽  
Heng Wee Tan ◽  
Peter B. Heenan ◽  
Mitchell Andrews ◽  
Anne Willems

In total 14 strains of Gram-stain-negative, rod-shaped bacteria were isolated from Sophora longicarinata and Sophora microphylla root nodules and authenticated as rhizobia on these hosts. Based on the 16S rRNA gene phylogeny, they were shown to belong to the genus Mesorhizobium, and the strains from S. longicarinata were most closely related to Mesorhizobium amorphae ACCC 19665T (99.8–99.9 %), Mesorhizobium huakuii IAM 14158T (99.8–99.9 %), Mesorhizobium loti USDA 3471T (99.5–99.9 %) and Mesorhizobium septentrionale SDW 014T (99.6–99.8 %), whilst the strains from S. microphylla were most closely related to Mesorhizobium ciceri UPM-Ca7T (99.8–99.9 %), Mesorhizobium qingshengii CCBAU 33460T (99.7 %) and Mesorhizobium shangrilense CCBAU 65327T (99.6 %). Additionally, these strains formed two distinct groups in phylogenetic trees of the housekeeping genes glnII, recA and rpoB. Chemotaxonomic data, including fatty acid profiles, supported the assignment of the strains to the genus Mesorhizobium and allowed differentiation from the closest neighbours. Results of DNA–DNA hybridizations, MALDI-TOF MS analysis, ERIC-PCR, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of our strains from their closest neighbouring species. Therefore, the strains isolated from S. longicarinata and S. microphylla represent two novel species for which the names Mesorhizobium waimense sp. nov. (ICMP 19557T = LMG 28228T = HAMBI 3608T) and Mesorhizobium cantuariense sp. nov. (ICMP 19515T = LMG 28225T = HAMBI 3604T), are proposed respectively.


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4880-4885 ◽  
Author(s):  
Li Zhang ◽  
Lei Li ◽  
Zixin Deng ◽  
Kui Hong

A novel actinomycete, designated strain 2902at01T was isolated from soil collected at a mangrove forest in Zhanjiang, Guangdong province, China. The strain was identified using a polyphasic classification method. The 16S rRNA gene sequence of strain 2902at01T showed the highest similarity to Micromonospora equina Y22T (98.3 %) and Micromonospora pattaloongensis TJ2-2T (98.1 %). Phylogenetic analysis based on the gyrB gene sequence also clearly showed that the strain was different from any previously discovered species of the genus Micromonospora. The characteristic whole-cell sugars were ribose and xylose. The cell-wall hydrolysates contained alanine, asparagine, glycine and meso-diaminopimelic acid. MK-10(H6) and MK-10(H8) were the major menaquinones of the novel strain. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0. The characteristic polar lipids of strain 2902at01T were phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannoside and diphosphatidylglycerol. The DNA G+C content was 70.2 mol%. DNA–DNA hybridization data combined with other physiological and biochemical features could distinguish strain 2902at01T from the reference strains M. equina Y22T and M. pattaloongensis TJ2-2 T. On the basis of these phenotypic and genotypic data, strain 2902at01T represents a novel species of the genus Micromonospora, for which the name Micromonospora zhanjiangensis sp. nov. is proposed. The type strain is 2902at01T ( = CCTCC AA2014018T = DSM 45902T).


2007 ◽  
Vol 57 (4) ◽  
pp. 713-716 ◽  
Author(s):  
Ying-Shun Cui ◽  
Wan-Taek Im ◽  
Cheng-Ri Yin ◽  
Deok-Chun Yang ◽  
Sung-Taik Lee

A Gram-positive, aerobic, coccus-shaped, non-endospore-forming bacterium (Gsoil 633T) was isolated from soil from a ginseng field in Pocheon province in South Korea. The novel isolate was characterized in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarities, strain Gsoil 633T was shown to belong to the family Propionibacteriaceae. The closest phylogenetic relative was Microlunatus phosphovorus DSM 19555T, with 96.1 % sequence similarity; the sequence similarity to other members of the family was less than 95.4 %. The isolate was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-9(H4) as the predominant menaquinone and anteiso-C15 : 0, iso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The G+C content of the genomic DNA was 69.8 mol%. The morphological and chemotaxonomic properties of the isolate were consistent with those of M. phosphovorus, but the results of physiological and biochemical tests allowed the phenotypic differentiation of strain Gsoil 633T from this species. Therefore, strain Gsoil 633T represents a novel species, for which the name Microlunatus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 633T (=KCTC 13940T=DSM 17942T).


2005 ◽  
Vol 55 (2) ◽  
pp. 877-880 ◽  
Author(s):  
Martha E. Trujillo ◽  
Carmen Fernández-Molinero ◽  
Encarna Velázquez ◽  
Reiner M. Kroppenstedt ◽  
Peter Schumann ◽  
...  

An actinomycete strain was recovered from a pond where radon is known to be dissolved. A polyphasic study was undertaken to identify the new isolate. The 16S rRNA gene sequence of strain WA201T showed closest similarity to the type strains of Micromonospora carbonacea (98·5 %) and Micromonospora matsumotoense (98·1 %). The chemotaxonomic results confirmed the taxonomic position of the isolate in the genus Micromonospora. DNA–DNA relatedness values supported the classification of this isolate as a novel species. A number of physiological and biochemical tests were able to distinguish strain WA201T from its closest phylogenetic neighbours. Therefore, it is proposed that isolate WA201T (=DSM 44830T=LMG 22229T) be considered the type strain representing a novel species, Micromonospora mirobrigensis sp. nov.


2010 ◽  
Vol 60 (5) ◽  
pp. 1158-1162 ◽  
Author(s):  
Cho-Song Yang ◽  
Ming-Hui Chen ◽  
A. B. Arun ◽  
Chaolun Allen Chen ◽  
Jih-Terng Wang ◽  
...  

A Gram-negative, aerobic, rod-shaped bacterium, designated strain CL-33T, was isolated from the encrusting pore coral Montipora aequituberculata collected from seawater off the coast of southern Taiwan. 16S rRNA gene sequence analysis showed that the strain clustered closely with Endozoicomonas elysicola MKT110T (96.7 % similarity). The novel strain required NaCl for growth and exhibited optimal growth at 25 °C and in the presence of 2–3 % NaCl. Predominant cellular fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c; 39.6 %), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 32.8 %) and C16 : 0 (12.0 %). The DNA G+C content of strain CL-33T was 50.0 mol%. The results of physiological and biochemical tests allowed the clear phenotypic differentiation of this isolate from E. elysicola. It is evident from the genotypic, phenotypic and chemotaxonomic data presented that strain CL-33T represents a novel species of the genus Endozoicomonas, for which the name Endozoicomonas montiporae sp. nov. is proposed. The type strain is CL-33T (=LMG 24815T =BCRC 17933T).


Sign in / Sign up

Export Citation Format

Share Document