scholarly journals Enterorhabdus caecimuris sp. nov., a member of the family Coriobacteriaceae isolated from a mouse model of spontaneous colitis, and emended description of the genus Enterorhabdus Clavel et al. 2009

2010 ◽  
Vol 60 (7) ◽  
pp. 1527-1531 ◽  
Author(s):  
Thomas Clavel ◽  
Wayne Duck ◽  
Cédric Charrier ◽  
Mareike Wenning ◽  
Charles Elson ◽  
...  

The C3H/HeJBir mouse model of intestinal inflammation was used for isolation of a Gram-positive, rod-shaped, non-spore-forming bacterium (B7T) from caecal suspensions. On the basis of partial 16S rRNA gene sequence analysis, strain B7T was a member of the class Actinobacteria, family Coriobacteriaceae, and was related closely to Enterorhabdus mucosicola Mt1B8T (97.6 %). The major fatty acid of strain B7T was C16 : 0 (19.1 %) and the respiratory quinones were mono- and dimethylated. Cells were aerotolerant, but grew only under anoxic conditions. Strain B7T did not convert the isoflavone daidzein and was resistant to cefotaxime. The results of DNA–DNA hybridization experiments and additional physiological and biochemical tests allowed the genotypic and phenotypic differentiation of strain B7T from the type strain of E. mucosicola. Therefore, strain B7T represents a novel species, for which the name Enterorhabdus caecimuris sp. nov. is proposed. The type strain is B7T (=DSM 21839T =CCUG 56815T).

2007 ◽  
Vol 57 (9) ◽  
pp. 2143-2146 ◽  
Author(s):  
Dong-Shan An ◽  
Wan-Taek Im ◽  
Sung-Taik Lee ◽  
Min-Ho Yoon

A novel bacterial strain designated Gsoil 616T was isolated from a soil sample of a ginseng field in Pocheon province (South Korea) and was characterized taxonomically by using a polyphasic approach. The isolate was Gram-positive, strictly aerobic, non-motile, non-spore-forming and rod- or coccoid-shaped. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Nocardioides in the family Nocardioidaceae but was clearly separated from established species of this genus. The 16S rRNA gene sequence similarities between strain Gsoil 616T and the type strains of Nocardioides species with validly published names ranged from 91.8 to 96.1 %. The G+C content of the genomic DNA was 73 mol%. Phenotypic and chemotaxonomic data [major menaquinone MK-8(H4) and major fatty acid iso-C16 : 0] supported the affiliation of strain Gsoil 616T to the genus Nocardioides. However, the results of physiological and biochemical tests allowed phenotypic differentiation of the isolate from other Nocardioides species. Therefore, strain Gsoil 616T represented a novel species within the genus Nocardioides, for which the name Nocardioides panacihumi sp. nov. is proposed. The type strain is Gsoil 616T (=KCTC 19187T =DSM 18660T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1213-1216 ◽  
Author(s):  
Huapeng Fan ◽  
Yanfen Xue ◽  
Yanhe Ma ◽  
Antonio Ventosa ◽  
William D. Grant

A novel haloalkaliphilic archaeon, strain 8W8T, was isolated from Lake Zabuye, on the Tibetan Plateau, China. On the basis of 16S rRNA gene sequence analysis, strain 8W8T was shown to belong to the genus Halorubrum and was related to Halorubrum vacuolatum (96·7 % sequence similarity), Halorubrum saccharovorum (96·0 %), Halorubrum lacusprofundi (95·4 %) and Halorubrum sodomense (95·3 %). The phylogenetic distance from any species within the other genera of Halobacteriales was lower than 90 %. The major polar lipids of strain 8W8T were C20C20 and C20C25 derivatives of phosphatidylglycerol phosphate and phosphatidylglycerol phosphate methyl ester. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 8W8T from the eight Halorubrum species with validly published names. Therefore, strain 8W8T represents a novel species, for which the name Halorubrum tibetense sp. nov. is proposed, with the type strain 8W8T (=AS 1.3239T=JCM 11889T).


2006 ◽  
Vol 56 (3) ◽  
pp. 541-547 ◽  
Author(s):  
Ingvild Wartiainen ◽  
Anne Grethe Hestnes ◽  
Ian R. McDonald ◽  
Mette M. Svenning

A Gram-negative, rod-shaped, non-motile, non-spore-forming, pink-pigmented bacterium, SV97T, was isolated from a wetland soil near Ny-Ålesund, Svalbard Islands, Norway (78° N). On the basis of 16S rRNA gene sequence similarity, strain SV97T was shown to belong to the Alphaproteobacteria and was highly related to a number of non-characterized Methylocystis strains with GenBank accession nos AJ458507 and AJ458502 (100 %) and AF177299, AJ458510, AJ458467, AJ458471, AJ431384, AJ458475, AJ458484, AJ458501 and AJ458466 (99 %). The most closely related type strains were Methylocystis parvus OBBPT (97·2 %) and Methylocystis echinoides IMET 10491T (97 %). The closest related recognized species within the genus Methylosinus was Methylosinus sporium NCIMB 11126T (96·0 % similarity). Chemotaxonomic and phenotypic data (C18 : 1 ω8 as the major fatty acid, non-motile, no rosette formation) supported the affiliation of strain SV97T to the genus Methylocystis. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain SV97T from the two recognized Methylocystis species. Strain SV97T therefore represents a novel species, for which the name Methylocystis rosea sp. nov. is proposed, with the type strain SV97T (=DSM 17261T=ATCC BAA-1196T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2513-2518 ◽  
Author(s):  
Peter Kämpfer ◽  
Holger C. Scholz ◽  
Birgit Huber ◽  
Enevold Falsen ◽  
Hans-Jürgen Busse

Three Gram-negative, rod-shaped, non-spore-forming bacteria were isolated from clinical specimens between 1992 and 2000. On the basis of 16S rRNA gene sequence similarities, these strains (CCUG 30717T, CCUG 43892 and CCUG 38531T) were shown to belong to the Alphaproteobacteria, most closely related to Ochrobactrum grignonense (99.0 and 98.2 % similarity to the type strain). Chemotaxonomic data (major ubiquinone Q-10; major polyamines spermidine, sym-homospermidine and putrescine; major polar lipids phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol and phosphatidylcholine; major fatty acids C18 : 1 ω7c and C19 : 0 cyclo ω8c) supported the affiliation of the isolates to the genus Ochrobactrum. The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the isolates from described Ochrobactrum species. Isolates CCUG 30717T and CCUG 43892 were closely related on the basis of DNA–DNA reassociation experiments and therefore represent one novel species, for which the name Ochrobactrum pseudogrignonense sp. nov. is proposed, with the type strain CCUG 30717T (=CIP 109451T). Isolate CCUG 38531T was different from these strains and also from other Ochrobactrum species. For this strain, the name Ochrobactrum haematophilum sp. nov. is proposed, with the type strain CCUG 38531T (=CIP 109452T).


2007 ◽  
Vol 57 (6) ◽  
pp. 1336-1341 ◽  
Author(s):  
Myung Kyum Kim ◽  
Ju-Ryun Na ◽  
Dong Ha Cho ◽  
Nak-Kyun Soung ◽  
Deok-Chun Yang

Strain Jip14T, a Gram-negative, non-spore-forming, rod-shaped, non-motile bacterium, was isolated from dried rice straw and characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain Jip14T belongs to the family Sphingobacteriaceae, and the highest degree of sequence similarity was determined to be to Pedobacter saltans DSM 12145T (88.5 %), Pedobacter africanus DSM 12126T (87.6 %), Pedobacter heparinus DSM 2366T (87.1 %) and Pedobacter caeni LMG 22862T (86.9 %). Chemotaxonomic data revealed that strain Jip14T possesses menaquinone MK-7 and the predominant fatty acids C15 : 0 iso, C16 : 0, C16 : 0 10-methyl, C17 : 0 iso 3-OH and summed feature 3 (C15 : 0 iso 2-OH/C16 : 1 ω7c). The results of physiological and biochemical tests clearly demonstrated that strain Jip14T represents a distinct species. Based on these data, Jip14T should be classified within a novel genus and species, for which the name Parapedobacter koreensis gen. nov., sp. nov. is proposed. The type strain of Parapedobacter koreensis is Jip14T (=KCTC 12643T=LMG 23493T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2358-2363 ◽  
Author(s):  
Sathiyaraj Srinivasan ◽  
Myung Kyum Kim ◽  
Gayathri Sathiyaraj ◽  
Vaidyanathan Veena ◽  
Muthusamy Mahalakshmi ◽  
...  

A Gram-negative, rod-shaped, motile bacterium was isolated from the soil of a ginseng field in Daejeon, South Korea, and characterized in order to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene sequence analysis revealed that strain DCY34T belonged to the family Sphingomonadaceae, and the highest degree of sequence similarity was found with Sphingopyxis witflariensis W-50T (97.1 %), Sphingopyxis ginsengisoli Gsoil 250T (97.0 %), Sphingopyxis chilensis S37T (96.9 %), Sphingopyxis macrogoltabida IFO 15033T (96.8 %), Sphingopyxis alaskensis RB2256T (96.7 %) and Sphingopyxis taejonensis JSS54T (96.7 %). Chemotaxonomic data revealed that strain DCY34T possessed ubiquinone Q-10 as the predominant respiratory lipoquinone, which is common to members of the genus Sphingopyxis. The predominant fatty acids were C18 : 1 ω7c (27.5 %), summed feature 4 (C16 : 1 ω7c and/or C15 : 0 iso 2-OH; 18.6 %), C16 : 0 (15.6 %) and summed feature 8 (C19 : 1 ω6c and/or unknown 18.864; 15.4 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and an unknown polar lipid. The results of physiological and biochemical tests clearly demonstrated that strain DCY34T represented a separate species and supported its affiliation to the genus Sphingopyxis. Based on these data, the new isolate represents a novel species, for which the name Sphingopyxis panaciterrulae sp. nov. is proposed. The type strain is DCY34T (=KCTC 22112T=JCM 14844T).


2010 ◽  
Vol 60 (7) ◽  
pp. 1522-1526 ◽  
Author(s):  
Ho-Bin Kim ◽  
Sathiyaraj Srinivasan ◽  
Gayathri Sathiyaraj ◽  
Lin-Hu Quan ◽  
Se-Hwa Kim ◽  
...  

A Gram-negative, non-spore-forming, rod-shaped bacterium, designated strain DCY01T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain DCY01T belonged to the Gammaproteobacteria and was most closely related to Stenotrophomonas koreensis KCTC 12211T (98.4 % similarity), Stenotrophomonas humi R-32729T (97.2 %), Stenotrophomonas terrae R-32768 (97.1 %), Stenotrophomonas maltophilia DSM 50170T (96.9 %) and Stenotrophomonas nitritireducens DSM 12575T (96.8 %). Chemotaxonomic analyses revealed that strain DCY01T possessed a quinone system with Q-8 as the predominant compound, and iso-C15 : 0 (28.2 %), C16 : 0 10-methyl (13.2 %), iso-C15 : 1 F (10.8 %) and C15 : 0 (7.5 %) as major fatty acids, corroborating assignment of strain DCY01T to the genus Stenotrophomonas. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain DCY01T represents a species distinct from recognized Stenotrophomonas species. Based on these data, DCY01T (=KCTC 12539T=NBRC 101154T) should be classified as the type strain of a novel species of the genus Stenotrophomonas, for which the name Stenotrophomonas ginsengisoli sp. nov. is proposed.


2011 ◽  
Vol 61 (2) ◽  
pp. 275-280 ◽  
Author(s):  
P. Kämpfer ◽  
A. B. Arun ◽  
H.-J. Busse ◽  
S. Langer ◽  
C.-C. Young ◽  
...  

A Gram-positive bacterium (strain CC-YMP-6T) was isolated from soil samples collected from Yang-Ming Mountain, Taiwan. On the basis of 16S rRNA gene sequence analysis, strain CC-YMP-6T clearly belonged to the genus Virgibacillus and was most closely related to the type strains of Virgibacillus halophilus (96.2 % similarity) and Virgibacillus kekensis (96.3 %). The predominant isoprenoid quinone was menaquinone MK-7 and the polar lipid profile was composed of the major components diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one unidentified phospholipid plus moderate amounts of two unidentified aminophospholipids and a phospholipid. The polyamine pattern comprised spermidine as the single major component with spermine and putrescine present in minor amounts. The major fatty acids of strain CC-YMP-6T were iso-C15 : 0 and anteiso-C15 : 0. The results of physiological and biochemical tests allowed the clear phenotypic differentiation of strain CC-YMP-6T from all recognized species of the genus Virgibacillus. Strain CC-YMP-6T is therefore considered to represent a novel species of the genus Virgibacillus, for which the name Virgibacillus soli sp. nov. is proposed. The type strain is CC-YMP-6T (=DSM 22952T=CCM 7714T).


2006 ◽  
Vol 56 (2) ◽  
pp. 453-457 ◽  
Author(s):  
Hee-Chan Yang ◽  
Wan-Taek Im ◽  
Kwang Kyu Kim ◽  
Dong-Shan An ◽  
Sung-Taik Lee

A Gram-negative, slightly curved rod-shaped bacterium, designated strain KMY02T, was isolated from a forest soil in Daejeon, South Korea. On the basis of 16S rRNA gene sequence similarity, strain KMY02T was shown to belong to the family Burkholderiaceae of the Betaproteobacteria, and to be related most closely to Burkholderia hospita LMG 20598T (98·7 %), Burkholderia caribensis LMG 18531T (98·0 %) and Burkholderia phymatum LMG 21445T (97·4 %). Its phylogenetic distance from all recognized species within the genus Burkholderia was less than 97 %. Chemotaxonomic data [Q-8 as the major ubiquinone; C16 : 0, C17 : 0 cyclo, summed feature 7 (C18 : 1 ω7c/ω9t/ω12t) and C15 : 0 as the major fatty acids] supported the affiliation of strain KMY02T to the genus Burkholderia. The results of DNA–DNA hybridization experiments and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the strain from recognized Burkholderia species. Therefore, KMY02T (=KCTC 12388T=NBRC 100964T) represents the type strain of a novel species, for which the name Burkholderia terrae sp. nov. is proposed.


2006 ◽  
Vol 56 (9) ◽  
pp. 2193-2197 ◽  
Author(s):  
Qiang Gu ◽  
Hongli Luo ◽  
Wen Zheng ◽  
Zhiheng Liu ◽  
Ying Huang

A high-G+C-content, Gram-positive bacterium, strain D10T, was isolated from the root of Oroxylum indicum, a Chinese medicinal plant. Based on 16S rRNA gene sequence analysis, strain D10T was a member of the genus Pseudonocardia and was most closely related, albeit loosely, to Pseudonocardia halophobica. Morphological and chemotaxonomic characteristics support the affiliation of strain D10T to the genus Pseudonocardia. Results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain D10T from related Pseudonocardia species. Strain D10T (=CGMCC 4.3143T=DSM 44984T) therefore represents a novel species, for which the name Pseudonocardia oroxyli sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document