Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoridae subclassis nov.

2010 ◽  
Vol 60 (10) ◽  
pp. 2314-2319 ◽  
Author(s):  
Midori Kurahashi ◽  
Yukiyo Fukunaga ◽  
Yayoi Sakiyama ◽  
Shigeaki Harayama ◽  
Akira Yokota

A tangerine-coloured, Gram-positive actinobacterial strain, designated F10T, was isolated from the abdominal epidermis of a sea cucumber, Holothuria edulis, collected in seawater off the coast of Japan. A 16S rRNA gene sequence analysis indicated that strain F10T was a member of the class Actinobacteria and was most closely related to Nitriliruptor alkaliphilus ANL-iso2T (87.4 % sequence similarity). Phylogenetic analyses showed that strain F10T represented a novel, deep-rooted, and distinct phylogenetic lineage within the class Actinobacteria and clustered with N. alkaliphilus and uncultured bacteria. The organism had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, and rhamnose and galactose as the diagnostic cell-wall sugars. Strain F10T contained C16 : 1 ω7c, C16 : 0 and C17 : 1 ω8c as the major cellular fatty acids. The predominant isoprenoid quinone was MK-9 (H4). The G+C content of the DNA was 68.3 mol%. Based on data from the current polyphasic study, it is proposed that the new marine isolate be placed in a novel genus and be considered a novel species designated Euzebya tangerina gen. nov., sp. nov. within the new family, order and subclass Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoridae subclassis nov. in the class Actinobacteria. The type strain of Euzebya tangerina is F10T (=NBRC 105439T =KCTC 19736T).

Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Seo-Youn Jung ◽  
Tae-Kwang Oh

A Gram-positive, non-motile, spherical, non-spore-forming bacterial strain, DS-52T, was isolated from soil from Dokdo, Korea, and its taxonomic position was investigated by using a polyphasic approach. It grew optimally at 25 °C and pH 6.0–7.0. Strain DS-52T had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, and galactose, mannose, xylose and rhamnose as whole-cell sugars. It contained MK-8(H4) and MK-9(H4) as the predominant menaquinones and anteiso-C15 : 0, iso-C15 : 0 and C17 : 0 as major fatty acids. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyldimethylethanolamine. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-52T is most closely related to the genus Nakamurella of the suborder Frankineae. Strain DS-52T exhibited 16S rRNA gene sequence similarity values of 96.5 % to Nakamurella multipartita JCM 9543T and 92.0–93.9 % to other members of the suborder Frankineae. The diagnostic diamino acid type and polar lipid profile of strain DS-52T were the same as those of the genus Nakamurella. However, strain DS-52T could be clearly distinguished from the genus Nakamurella by differences in predominant menaquinones, major fatty acids and cell-wall sugars. Accordingly, based on combined phenotypic, chemotaxonomic and phylogenetic data, strain DS-52T (=KCTC 19127T=CIP 108919T) is proposed as the type strain of a novel species in a new genus, Humicoccus flavidus gen. nov., sp. nov.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2391-2396 ◽  
Author(s):  
T.N.R. Srinivas ◽  
P. Anil Kumar ◽  
M. Tank ◽  
B. Sunil ◽  
Manasa Poorna ◽  
...  

A novel Gram-stain-positive, coccoid, non-motile bacterium, designated strain AMV4T, was isolated from a soil sample collected from a mud volcano located in the Andaman Islands, India. The colony was pale orange. Strain AMV4T was positive for oxidase, aesculinase, lysine decarboxylase and ornithine decarboxylase activities and negative for amylase, catalase, cellulase, protease, urease and lipase activities. 16S rRNA gene sequence analysis indicated that strain AMV4T was a member of the order Actinomycetales and was closely related to Aquipuribacter hungaricus with a sequence similarity of 97.13 % (pairwise alignment). Phylogenetic analyses showed that strain AMV4T clustered with Aquipuribacter hungaricus and was distantly related to the other genera of the family Intrasporangiaceae. DNA–DNA hybridization between strains AMV4T and Aquipuribacter hungaricus IV-75T showed a relatedness of 28 %. The predominant cellular fatty acids were iso-C15 : 0 (6.9 %), anteiso-C15 : 0 (25.3 %), C16 : 0 (12.9 %), anteiso-C16 : 0 (5.6 %), C18 : 1ω9c (19.8 %) and C18 : 3ω6,9,12c (9.1 %). The diagnostic diamino acid in the cell-wall peptidoglycan of strain AMV4T was meso-diaminopimelic acid. Strain AMV4T contained MK-10(H4) as the predominant respiratory quinone. The polar lipids consisted of phosphatidylglycerol, one unidentified glycolipid, two unidentified phospholipids and five unidentified lipids. The DNA G+C content of strain AMV4T was 74.3 mol%. Based on data from this taxonomic study using a polyphasic approach, it is proposed that strain AMV4T represents a novel species of the genus Aquipuribacter, with the suggested name Aquipuribacter nitratireducens sp. nov. The type strain is AMV4T ( = CCUG 58430T = DSM 22863T = NBRC 107137T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4757-4762 ◽  
Author(s):  
Ying Sun ◽  
Zhaohui Guo ◽  
Qi Zhao ◽  
Qiyu Gao ◽  
QinJian Xie ◽  
...  

A Gram-stain-variable, rod-shaped, non-motile and endospore-forming bacterium, designated strain HZ1T, was isolated from a sample of bank side soil from Hangzhou city, Zhejiang province, PR China. On the basis of 16S rRNA gene sequence analysis, strain HZ1T was closely related to members of the genus Paenibacillus, sharing the highest levels of sequence similarity with Paenibacillus agarexedens DSM 1327T (94.4 %), Paenibacillus sputi KIT00200-70066-1T (94.4 %). Growth occurred at 15–42 °C (optimum 30–37 °C), pH 5.0–9.5 (optimum pH 7.0–8.0) and NaCl concentrations of up to 6.0 % (w/v) were tolerated (optimum 0.5 %). The dominant respiratory quinone was MK-7 and the DNA G+C content was 40.1 mol%. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The major polar lipids of strain HZ1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unknown lipids. The diagnostic diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain HZ1T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus ripae sp. nov. (type strain HZ1T = CCTCC AB 2014276T = LMG 28639T) is proposed.


2011 ◽  
Vol 61 (3) ◽  
pp. 482-486 ◽  
Author(s):  
Sung M. Kim ◽  
Sae W. Park ◽  
Sang T. Park ◽  
Young M. Kim

A bacterial strain, PY2T, capable of oxidizing carbon monoxide, was isolated from a soil sample collected from a roadside at Yonsei University, Seoul, Korea. On the basis of 16S rRNA gene sequence analysis, strain PY2T was shown to belong to the genus Terrabacter and was most closely related to Terrabacter lapilli LR-26T (99.1 % similarity). Strain PY2T was characterized chemotaxonomically as having iso-C15 : 0 as the predominant fatty acid, MK-8(H4) as the major menaquinone, ll-diaminopimelic acid as the diagnostic diamino acid of the cell wall, as possessing a polar lipid profile that included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and unknown amino-containing phosphoglycolipids, and having a DNA G+C content of 75.6 mol%. DNA–DNA relatedness values between strain PY2T and the type strains of T. lapilli, Terrabacter tumescens, Terrabacter terrae and Terrabacter aerolatus were 20.0 %, 22.9 %, 35.9 % and 64.5 %, respectively. Based on the combined evidence from the phylogenetic analyses, chemotaxonomic data and DNA–DNA hybridization experiments, it is proposed that strain PY2T represents a novel species for which the name Terrabacter carboxydivorans sp. nov. is proposed. The type strain is PY2T (=KCCM 42922T=JCM 16259T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2650-2656 ◽  
Author(s):  
Guo-Xing Nie ◽  
Hong Ming ◽  
Shuai Li ◽  
En-Min Zhou ◽  
Juan Cheng ◽  
...  

A novel actinomycete strain, designated YIM 75904T, was isolated from a soil sample that had been collected from a dry and hot river valley in Dongchuan county, Yunnan province, south-western China. The taxonomic position of the novel strain was investigated by a polyphasic approach. In phylogenetic analyses based on 16S rRNA gene sequences, strain YIM 75904T formed a distinct clade within the genus Amycolatopsis and appeared to be closely related to Amycolatopsis sacchari K24T (99.3 % sequence similarity). Strain YIM 75904T had a type-IV cell wall, with no detectable mycolic acids, and had MK-9(H4) as its predominant menaquonine. Its cell wall contained meso-diaminopimelic acid, galactose, glucose and arabinose, and its major cellular fatty acids were iso-C16 : 0, iso-C15 : 0, anteiso-C17 : 0 and anteiso-C15 : 0. The genomic DNA G+C content of the novel strain was 68.5 mol%. Based on the results of physiological and biochemical tests and DNA–DNA hybridizations, strain YIM 75904T represents a novel species of the genus Amycolatopsis for which the name Amycolatopsis dongchuanensis sp. nov. is proposed. The type strain is YIM 75904T ( = CCTCC AA 2011016T  = JCM 18054T).


2007 ◽  
Vol 57 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Jaewoo Yoon ◽  
Mina Yasumoto-Hirose ◽  
Atsuko Katsuta ◽  
Hiroshi Sekiguchi ◽  
Satoru Matsuda ◽  
...  

An obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium, designated strain 04OKA010-24T, was isolated from seawater surrounding the hard coral Galaxea fascicularis L., collected at Majanohama, Akajima, Japan, and was subjected to a polyphasic taxonomic study. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain represented a member of the phylum ‘Verrucomicrobia’ and shared 84–95 % sequence similarity with cultivated strains of ‘Verrucomicrobia’ subdivision 4. Amino acid analysis of the cell-wall hydrolysate indicated the absence of muramic acid and diaminopimelic acid, which suggested that the strain did not contain peptidoglycan in the cell wall. The G+C content of the DNA was 53.9 mol%. MK-7 was the major menaquinone and C14 : 0, C18 : 1 ω9c and C18 : 0 were the major fatty acids. On the basis of these data, it was concluded that strain 04OKA010-24T represents a novel species in a new genus in subdivision 4 of the phylum ‘Verrucomicrobia’, for which the name Coraliomargarita akajimensis gen. nov., sp. nov. is proposed. The type strain of Coraliomargarita akajimensis is 04OKA010-24T (=MBIC06463T=IAM 15411T=KCTC 12865T).


2007 ◽  
Vol 57 (12) ◽  
pp. 2874-2880 ◽  
Author(s):  
Jaewoo Yoon ◽  
Naoya Oku ◽  
Satoru Matsuda ◽  
Hiroaki Kasai ◽  
Akira Yokota

An obligately aerobic, spherical, non-motile, pale-yellow pigmented bacterium was isolated from a piece of leaf of seagrass, Enhalus acoroides (L.f.) Royle, grown in Okinawa, Japan and was subjected to a polyphasic taxonomic study. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the novel isolate N5FB36-5T shared approximately 96–98 % sequence similarity with the species of the genus Pelagicoccus of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’. The DNA–DNA relatedness values of strain N5FB36-5T with Pelagicoccus mobilis 02PA-Ca-133T and Pelagicoccus albus YM14-201T were below 70 %, which is accepted as the phylogenetic definition of a novel species. β-Lactam antibiotic susceptibility test and amino acid analysis of the cell wall hydrolysates indicated the absence of muramic acid and diaminopimelic acid in the cell walls, which suggested that this strain lacks an ordinary Gram-negative type of peptidoglycan in the cell wall. The DNA G+C content of strain N5FB36-5T was 51.6 mol%; MK-7 was the major menaquinone; and the presence of C16 : 0, C16 : 1 ω7c and anteiso-C15 : 0 as the major cellular fatty acids supported the identification of the novel isolate as a member of the genus Pelagicoccus. On the basis of polyphasic taxonomic data, it was concluded that this strain should be classified as a novel species of the genus Pelagicoccus, for which the name Pelagicoccus croceus sp. nov. is proposed. The type strain is N5FB36-5T (=MBIC08282T=KCTC 12903T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 591-595 ◽  
Author(s):  
Sang-Hee Lee ◽  
Qing-Mei Liu ◽  
Sung-Taik Lee ◽  
Sun-Chang Kim ◽  
Wan-Taek Im

A Gram-reaction-positive, rod-shaped, non-motile, non-spore-forming bacterium (strain BX5-10T) was isolated from the soil of a ginseng field on Baekdu Mountain in Jilin district, China. The taxonomic position of this bacterium was determined in an investigation based on a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain BX5-10T was shown to belong to the family Nocardioidaceae and to be most closely related to Nocardioides plantarum NCIMB 12834T (96.5 % sequence similarity), Nocardioides dokdonensis KCTC 19309T (96.2 %) and Nocardioides fonticola NAA-13T (95.1 %). Strain BX5-10T was characterized chemotaxonomically as having ll-2,6-diaminopimelic acid in its cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone and C18 : 1ω9c, C16 : 0 and C17 : 1ω8c as its major fatty acids. The G+C content of the genomic DNA was 70.3 mol%. The novel strain could be differentiated genotypically and phenotypically from all recognized species of the genus Nocardioides. Based on the results of the phylogenetic analyses and the genotypic and phenotypic data, a novel species, Nocardioides ginsengagri sp. nov., is proposed. The type strain is BX5-10T ( = KCTC 19467T = DSM 21362T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3853-3860 ◽  
Author(s):  
Wei-An Lai ◽  
Asif Hameed ◽  
Shih-Yao Lin ◽  
Mei-Hua Hung ◽  
Yi-Han Hsu ◽  
...  

A Gram-stain-variable, short-rod-shaped, endospore-forming, strictly aerobic, non-motile, chitinolytic and endophytic bacterium, designated strain CC-Alfalfa-19T, exhibiting unusual bipolar appendages was isolated from a root nodule of alfalfa (Medicago sativa L.) in Taiwan and subjected to a polyphasic taxonomic study. Based on 16S rRNA gene sequence analysis, strain CC-Alfalfa-19T was found to be most closely related to Paenibacillus puldeungensis CAU 9324T (95.2 %), whereas other species of the genus Paenibacillus shared ≤ 95.0 % sequence similarity. The phylogenetic analysis revealed a distinct phyletic lineage established by strain CC-Alfalfa-19T with respect to other species of the genus Paenibacillus. Fatty acids comprised predominantly anteiso-C15 : 0, C16 : 0, anteiso-C17 : 0 and iso-C16 : 0. Menaquinone 7 (MK-7) was identified as the sole respiratory quinone and the genomic DNA G+C content was 42.7 mol%. Polar lipids included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, an unidentified glycolipid and an unidentified lipid. The diagnostic diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. Based on the polyphasic taxonomic evidence that was in line with the genus Paenibacillus and additional distinguishing characteristics, strain CC-Alfalfa-19T is considered to represent a novel species, for which the name Paenibacillus medicaginis sp. nov. (type strain CC-Alfalfa-19T = BCRC 80441T = JCM 18446T) is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2406-2411 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-positive, non-motile, coccoid-shaped, non-spore-forming halophilic bacterial strain, BY-5T, was isolated from a marine solar saltern in Korea and its taxonomic position was investigated by using a polyphasic approach. The novel strain grew optimally at 37 °C and in the presence of 10 % (w/v) NaCl. Strain BY-5T had meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan, MK-7 as the predominant menaquinone and anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C17 : 0 as the major fatty acids. The DNA G+C content was 47.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain BY-5T formed a coherent cluster with Bacillus halophilus and Marinococcus albus. Strain BY-5T exhibited 16S rRNA gene sequence similarity values of 98.7 and 97.4 % to the type strains of B. halophilus and M. albus, respectively. Strain BY-5T was distinguished from B. halophilus and M. albus by several phenotypic properties and DNA–DNA relatedness data. On the basis of the combined chemotaxonomic and phylogenetic data, it is proposed that M. albus, B. halophilus and strain BY-5T should be placed in a new genus as three separate species. Marinococcus albus and Bacillus halophilus are reclassified in a new genus, Salimicrobium gen. nov., as Salimicrobium album comb. nov. and Salimicrobium halophilum comb. nov., respectively. The type species of the new genus is Salimicrobium album. Strain BY-5T (=KCTC 3989T=CIP 108918T) is placed in the genus Salimicrobium as a novel species Salimicrobium luteum sp. nov.


Sign in / Sign up

Export Citation Format

Share Document