scholarly journals Natronoarchaeum mannanilyticum gen. nov., sp. nov., an aerobic, extremely halophilic archaeon isolated from commercial salt

2010 ◽  
Vol 60 (11) ◽  
pp. 2529-2534 ◽  
Author(s):  
Yasuhiro Shimane ◽  
Yuji Hatada ◽  
Hiroaki Minegishi ◽  
Toru Mizuki ◽  
Akinobu Echigo ◽  
...  

Strain YSM-123T was isolated from commercial salt made from Japanese seawater in Niigata prefecture. Optimal NaCl and Mg2+ concentrations for growth were 4.0–4.5 M and 5 mM, respectively. The isolate was a mesophilic and slightly alkaliphilic haloarchaeon, whose optimal growth temperature and pH were 37 °C and pH 8.0–9.0. Phylogenetic analysis based on 16S rRNA gene sequence analysis suggested that strain YSM-123T is a member of the phylogenetic group defined by the family Halobacteriaceae, but there were low similarities to type strains of other genera of this family (≤90 %); for example, Halococcus (similarity <89 %), Halostagnicola (<89 %), Natronolimnobius (<89 %), Halobiforma (<90 %), Haloterrigena (<90 %), Halovivax (<90 %), Natrialba (<90 %), Natronobacterium (<90 %) and Natronococcus (<90 %). The G+C content of the DNA was 63 mol%. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, disulfated diglycosyl diether and an unknown glycolipid. On the basis of the data presented, we propose that strain YSM-123T should be placed in a new genus and species, Natronoarchaeum mannanilyticum gen. nov., sp. nov. The type strain of Natronoarchaeum mannanilyticum is strain YSM-123T (=JCM 16328T =CECT 7565T).

2010 ◽  
Vol 60 (3) ◽  
pp. 633-637 ◽  
Author(s):  
F. F. Hezayen ◽  
M. C. Gutiérrez ◽  
A. Steinbüchel ◽  
B. J. Tindall ◽  
B. H. A. Rehm

Strain 56T was isolated from a hypersaline soil in Aswan (Egypt). Cells were pleomorphic rods. The organism was neutrophilic, motile and required at least 1.7 M (10 % w/v) NaCl, but not MgCl2, for growth; optimal growth occurred at ≥3.8 M (≥22.5 %) NaCl. The strain was thermotolerant with an optimum temperature for growth of 40 °C, although growth was possible up to 55 °C. The G+C content of the DNA of the novel strain was 67.1 mol%.16S rRNA gene sequence analysis revealed that strain 56T was a member of the phyletic group defined by the family Halobacteriaceae, showing the highest similarity to Halopiger xanaduensis SH-6T (99 %) and the next highest similarity of 94 % to other members of the family Halobacteriaceae. DNA–DNA hybridization revealed 27 % relatedness between strain 56T and Hpg. xanaduensis SH-6T. Polar lipid analysis revealed the presence of the bis-sulfated glycolipid S2-DGD-1 as the sole glycolipid and the absence of the glycerol diether analogue phosphatidylglycerosulfate. Both C20 . 20 and C20 . 25 core lipids were present. Strain 56T accumulated large amounts of polyhydroxybutyrate and also secreted an exopolymer. Physiological and biochemical differences suggested that Hpg. xanaduanesis and strain 56T were sufficiently different to be separated into two distinct species. It is suggested that strain 56T represents a novel species of the genus Halopiger, for which the name Halopiger aswanensis sp. nov. is proposed. The type strain is strain 56T (=DSM 13151T=JCM 11628T).


2007 ◽  
Vol 57 (5) ◽  
pp. 1024-1027 ◽  
Author(s):  
A. M. Castillo ◽  
M. C. Gutiérrez ◽  
M. Kamekura ◽  
Y. Xue ◽  
Y. Ma ◽  
...  

A Gram-negative, pleomorphic, extremely halophilic archaeon, designated strain XH-70T, was isolated from the saline Lake Xilinhot, in Inner Mongolia, China. It formed small (0.9–1.5 mm), red-pigmented, elevated colonies on agar medium. The strain required at least 2.5 M NaCl and 5 mM Mg2+ for growth. The 16S rRNA gene sequence analysis indicated that strain XH-70T belongs to the family Halobacteriaceae, showing 99.5 % similarity to the type strain of Halovivax asiaticus and 94.7 and 94.6 % similarity, respectively, to the type strains of Natronococcus amylolyticus and Natronococcus occultus. Polar lipid analysis supported the placement of strain XH-70T in the genus Halovivax. DNA–DNA hybridization studies (32 % with Halovivax asiaticus CGMCC 1.4248T), as well as biochemical and physiological characterization, allowed strain XH-70T to be differentiated from Halovivax asiaticus. A novel species, Halovivax ruber sp. nov., is therefore proposed to accommodate this strain. The type strain is XH-70T (=CGMCC 1.6204T=DSM 18193T=JCM 13892T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2266-2270 ◽  
Author(s):  
Yasuhiro Shimane ◽  
Yuji Hatada ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Syuhei Nagaoka ◽  
...  

Strain YSM-79T was isolated from commercial salt made from seawater in Yonaguni island, Okinawa, Japan. The strain is an aerobic, Gram-negative, chemo-organotrophic and extremely halophilic archaeon. Cells are short rods that lyse in distilled water. Growth occurs at 1.5–5.3 M NaCl (optimum 2.5–3.0 M), pH 5.0–8.8 (optimum pH 5.2–6.3) and 20–55 °C (optimum 40 °C). Mg2+ is required for growth, with maximum growth at 200–300 mM Mg2+. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, sulfated diglycosyl diether-1 and five unidentified glycolipids. The G+C content of the DNA was 64 mol%. On the basis of 16S rRNA gene sequence analysis, strain YSM-79T was determined to be a member of the family Halobacteriaceae, with the closest related genus being Halobacterium (94 % sequence identity). In addition, the rpoB′ gene sequence of strain YSM-79T had <88 % sequence similarity to those of other members of the family Halobacteriaceae. The results of phenotypic, chemotaxonomic and phylogenetic analysis suggested that strain YSM-79T should be placed in a new genus, Salarchaeum gen. nov., as a representative of Salarchaeum japonicum sp. nov. The type strain is YSM-79T ( = JCM 16327T  = CECT 7563T).


2007 ◽  
Vol 57 (9) ◽  
pp. 2163-2166 ◽  
Author(s):  
Akiko Kageyama ◽  
Yoko Takahashi ◽  
Satoshi Ōmura

Strain KV-657T was isolated from a paddy field soil sample collected in Japan using GPM agar plates supplemented with catalase. The strain was a Gram-positive, aerobic organism that formed branching hyphae with ll-diaminopimelic acid as the diagnostic peptidoglycan diamino acid. The major menaquinone was MK-8(H4). Mycolic acids were not detected. The G+C content of the DNA was 70 mol%. 16S rRNA gene sequence analysis revealed that this strain is closely related to Intrasporangium calvum DSM 43043T, with a similarity of 97.6 %. Based on the morphological, biochemical and chemotaxonomic properties of this strain and phylogenetic analysis, it was concluded that this isolate represents a new genus and species in the family Intrasporangiaceae, for which the name Humihabitans oryzae gen. nov., sp. nov. is proposed. The type strain of Humihabitans oryzae is KV-657T (=NRRL B-24470T =NBRC 101802T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2320-2325 ◽  
Author(s):  
P. Anil Kumar ◽  
T. N. R. Srinivas ◽  
P. Pavan Kumar ◽  
S. Madhu ◽  
S. Shivaji

A novel Gram-negative, rod-shaped, non-motile bacterium, designated strain LW7T, was isolated from a water sample collected at a depth of 4.5 m from Lonar Lake in Buldhana district, Maharastra, India. The cell suspension was dark-reddish orange due to the presence of carotenoids. The fatty acids were dominated by large amounts of iso-C15 : 0 (59.6 %) and iso-C17 : 0 3-OH (8.9 %). Strain LW7T contained MK-4 and MK-5 as the major respiratory quinones and phosphatidylglycerol and phosphatidylethanolamine as the major phospholipids. 16S rRNA gene sequence analysis indicated that Belliella baltica, a member of family ‘Cyclobacteriaceae’ (phylum Bacteroidetes), is the closest related species, with a sequence similarity of 94.0 % to the type strain. Other members of the family ‘Cyclobacteriaceae’ had sequence similarities of <93.3 %. Based on the above-mentioned phenotypic and phylogenetic characteristics, strain LW7T is proposed as a representative of a new genus and species, Nitritalea halalkaliphila gen. nov., sp. nov. The type strain of Nitritalea halalkaliphila is LW7T (=CCUG 57665T =JCM 15946T =NCCB 100279T). The genomic DNA G+C of strain LW7T is 49 mol%.


2020 ◽  
Vol 70 (6) ◽  
pp. 3693-3700 ◽  
Author(s):  
Ashish Verma ◽  
Yash Pal ◽  
Pravin Kumar ◽  
Srinivasan Krishnamurthi

A novel archaeal strain designated as SPP-AMP-1T was isolated from saltpan soil, using the serial dilution method on a halophilic archaeal medium supplemented with ampicillin. Cells were both rod-shaped and pleomorphic in nature, non-motile, unable to produce acid from a variety of sugars or grow anaerobically with different substrates (l-arginine) and electron acceptors (DMSO, nitrate). Optimal growth was observed at 42 °C, 3.4–4.2 M NaCl and pH 7.2. Cells did not lyse in distilled water and grew in the absence of Mg2+ ions. Phylogenetic analysis based on the sequences of 16S rRNA gene, amino acid sequence of β′-subunit of RNA polymerase and 400 conserved proteins retrieved from the whole genome assemblies showed that strain SPP-AMP-1T was distantly related to any existing genera within the family Halobacteriaceae . MK-8 was the only quinone detected. Polar lipid analysis showed a unique combination of diethyl derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, glycosyl-mannosyl-glucosyl diether and sulphated glycosyl-mannosyl-glucosyl diether as the major lipids. The G+C content of genomic DNA is 57.7 mol%. The phenotypic, phylogenetic and genomic data supported the concept of the novel genus status of strain SPP-AMP-1T in the family Halobacteriaceae for which the name Halocatena pleomorpha gen. nov., sp. nov., is proposed; the type strain is SPP-AMP-1T (=JCM 31368T=KCTC 4276T=MTCC 12579T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2275-2279 ◽  
Author(s):  
Mostafa S. Elshahed ◽  
Kristen N. Savage ◽  
Aharon Oren ◽  
M. Carmen Gutierrez ◽  
Antonio Ventosa ◽  
...  

A pleomorphic, extremely halophilic archaeon (strain M6T) was isolated from a sulfide- and sulfur-rich spring in south-western Oklahoma (USA). It formed small (0·8–1·0 mm), salmon pink, elevated colonies on agar medium. The strain grew in a wide range of NaCl concentrations (6 % to saturation) and required at least 1 mM Mg2+ for growth. Strain M6T was able to reduce sulfur to sulfide anaerobically. 16S rRNA gene sequence analysis indicated that strain M6T belongs to the family Halobacteriaceae, genus Haloferax; it showed 96·7–98·0 % similarity to other members of the genus with validly published names and 89 % similarity to Halogeometricum borinquense, its closest relative outside the genus Haloferax. Polar lipid analysis and DNA G+C content further supported placement of strain M6T in the genus Haloferax. DNA–DNA hybridization values, as well as biochemical and physiological characterization, allowed strain M6T to be differentiated from other members of the genus Haloferax. A novel species, Haloferax sulfurifontis sp. nov., is therefore proposed to accommodate the strain. The type strain is M6T (=JCM 12327T=CCM 7217T=DSM 16227T=CIP 108334T).


2010 ◽  
Vol 60 (12) ◽  
pp. 2828-2831 ◽  
Author(s):  
Shuhei Nagaoka ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Ron Usami

A novel extremely halophilic archaeon, strain 194-10T, was isolated from a solar salt sample imported into Japan from the Philippines. Strain 194-10T was pleomorphic, neutrophilic and mesophilic and required at least 10 % (w/v) NaCl but no MgSO4 . 7H2O for growth; it exhibited optimal growth at 15 % (w/v) NaCl and 60 mM MgSO4 . 7H2O. Strain 194-10T grew at 20–45 °C (optimum, 30 °C) and pH 6.0–9.0 (optimum, pH 6.5–7.0). The G+C content of its DNA was 59.8 mol%. 16S rRNA gene sequence analysis revealed closest proximity to Halostagnicola larsenii XH-48T (98.5 % similarity), the sole representative of the genus Halostagnicola. Polar lipid analysis revealed that strain 194-10T contained phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester (the latter derived from both C20C20 and C20C25 archaeol) and several unidentified glycolipids. The results of DNA–DNA hybridization (20.7 % relatedness between Hst. larsenii JCM 13463T and strain 194-10T) and physiological and biochemical characteristics allowed differentiation of strain 194-10T from Hst. larsenii XH-48T. Therefore, strain 194-10T represents a novel species of the genus Halostagnicola, for which the name Halostagnicola kamekurae sp. nov. is proposed, with the type strain 194-10T (=DSM 22427T =JCM 16110T =CECT 7536T).


Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Suk Kyun Han ◽  
Cindy Snauwaert ◽  
Marc Vancanneyt ◽  
...  

Three novel heterotrophic, Gram-negative, yellow-pigmented, aerobic, gliding, oxidase- and catalase-positive bacteria were isolated from algae collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied represented members of the family Flavobacteriaceae and showed 93·5–93·8 % similarity with their closest relative, Psychroserpens burtonensis. The DNA G+C content of the strains was 34–37 mol%. The major respiratory quinone was MK-6. The predominant fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C15 : 1, iso-C16 : 0-3OH and iso-C17 : 0-3OH. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the newly described bacteria have been assigned to the new genus Winogradskyella gen. nov., as Winogradskyella thalassocola sp. nov. (type strain, KMM 3907T=KCTC 12221T=LMG 22492T=DSM 15363T), Winogradskyella epiphytica sp. nov. (type strain, KMM 3906T=KCTC 12220T=LMG 22491T=CCUG 47091T) and Winogradskyella eximia sp. nov. (type strain, KMM 3944T (=KCTC 12219T=LMG 22474T).


2004 ◽  
Vol 54 (4) ◽  
pp. 1017-1023 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Suk Kyun Han ◽  
Anatoly M. Lysenko ◽  
Manfred Rohde ◽  
...  

Six novel gliding, heterotrophic, Gram-negative, yellow-pigmented, aerobic, oxidase- and catalase-positive bacteria were isolated from the green alga Ulva fenestrata, sea water and a bottom sediment sample collected in the Gulf of Peter the Great, Sea of Japan. 16S rRNA gene sequence analysis revealed that the strains studied were members of the family Flavobacteriaceae. On the basis of their phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the novel bacteria have been assigned to the new genus Maribacter gen. nov., as Maribacter sedimenticola sp. nov., Maribacter orientalis sp. nov., Maribacter aquivivus sp. nov. and Maribacter ulvicola sp. nov., with the type strains KMM 3903T (=KCTC 12966T=CCUG 47098T), KMM 3947T (=KCTC 12967T=CCUG 48008T), KMM 3949T (=KCTC 12968T=CCUG 48009T) and KMM 3951T (=KCTC 12969T=DSM 15366T), respectively.


Sign in / Sign up

Export Citation Format

Share Document