scholarly journals Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring

2004 ◽  
Vol 54 (6) ◽  
pp. 2275-2279 ◽  
Author(s):  
Mostafa S. Elshahed ◽  
Kristen N. Savage ◽  
Aharon Oren ◽  
M. Carmen Gutierrez ◽  
Antonio Ventosa ◽  
...  

A pleomorphic, extremely halophilic archaeon (strain M6T) was isolated from a sulfide- and sulfur-rich spring in south-western Oklahoma (USA). It formed small (0·8–1·0 mm), salmon pink, elevated colonies on agar medium. The strain grew in a wide range of NaCl concentrations (6 % to saturation) and required at least 1 mM Mg2+ for growth. Strain M6T was able to reduce sulfur to sulfide anaerobically. 16S rRNA gene sequence analysis indicated that strain M6T belongs to the family Halobacteriaceae, genus Haloferax; it showed 96·7–98·0 % similarity to other members of the genus with validly published names and 89 % similarity to Halogeometricum borinquense, its closest relative outside the genus Haloferax. Polar lipid analysis and DNA G+C content further supported placement of strain M6T in the genus Haloferax. DNA–DNA hybridization values, as well as biochemical and physiological characterization, allowed strain M6T to be differentiated from other members of the genus Haloferax. A novel species, Haloferax sulfurifontis sp. nov., is therefore proposed to accommodate the strain. The type strain is M6T (=JCM 12327T=CCM 7217T=DSM 16227T=CIP 108334T).

2007 ◽  
Vol 57 (5) ◽  
pp. 1024-1027 ◽  
Author(s):  
A. M. Castillo ◽  
M. C. Gutiérrez ◽  
M. Kamekura ◽  
Y. Xue ◽  
Y. Ma ◽  
...  

A Gram-negative, pleomorphic, extremely halophilic archaeon, designated strain XH-70T, was isolated from the saline Lake Xilinhot, in Inner Mongolia, China. It formed small (0.9–1.5 mm), red-pigmented, elevated colonies on agar medium. The strain required at least 2.5 M NaCl and 5 mM Mg2+ for growth. The 16S rRNA gene sequence analysis indicated that strain XH-70T belongs to the family Halobacteriaceae, showing 99.5 % similarity to the type strain of Halovivax asiaticus and 94.7 and 94.6 % similarity, respectively, to the type strains of Natronococcus amylolyticus and Natronococcus occultus. Polar lipid analysis supported the placement of strain XH-70T in the genus Halovivax. DNA–DNA hybridization studies (32 % with Halovivax asiaticus CGMCC 1.4248T), as well as biochemical and physiological characterization, allowed strain XH-70T to be differentiated from Halovivax asiaticus. A novel species, Halovivax ruber sp. nov., is therefore proposed to accommodate this strain. The type strain is XH-70T (=CGMCC 1.6204T=DSM 18193T=JCM 13892T).


2005 ◽  
Vol 55 (3) ◽  
pp. 1311-1314 ◽  
Author(s):  
Xue-Wei Xu ◽  
Pei-Gen Ren ◽  
Shuang-Jiang Liu ◽  
Min Wu ◽  
Pei-Jin Zhou

A novel extremely halophilic strain, AJ2T, was isolated from Ayakekum salt lake located in the Altun Mountain National Nature Reserve in Xinjiang, China. This isolate was neutrophilic, motile and grew in a wide range of MgCl2 concentrations (0·005–1·0 M). The major polar lipids of the isolate were C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and phosphatidylglycerol sulfate. A comprehensive 16S rRNA gene sequence analysis revealed that the isolate shared 96·6–97·7 % sequence identity with Natrinema species. The isolate, however, could be genetically differentiated from these species by DNA–DNA hybridization analysis and on the basis of its physiological properties. On the basis of the polyphasic evidence, strain AJ2T (=AS 1.3731T=JCM 12890T) represents the type strain of a novel species, for which the name Natrinema altunense sp. nov. is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2204-2206 ◽  
Author(s):  
Heng-Lin Cui ◽  
Ze-Ying Lin ◽  
Ying Dong ◽  
Pei-Jin Zhou ◽  
Shuang-Jiang Liu

An extremely halophilic archaeon, strain Fa-1T, was isolated from a marine solar saltern in Fujian, China. Strain Fa-1T required Mg2+ and at least 2.0 M NaCl for growth. It was able to grow at pH 6.5–9.0 (optimally at pH 7.0–7.5) and at 20–55 °C (optimally at 37–42 °C). The major polar lipids of strain Fa-1T were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a sulfated diglycosyl diether. On the basis of a 16S rRNA gene sequence analysis, strain Fa-1T was closely related to nine species of the genus Halorubrum, showing sequence similarities of 97.4–98.4 %. The G+C content of the DNA of strain Fa-1T is 64.9 mol% (T m). DNA–DNA hybridization values between strain Fa-1T and the most closely related members of the genus Halorubrum were below 51 %. On the basis of the data from this study, strain Fa-1T represents a novel species of the genus Halorubrum, for which the name Halorubrum litoreum sp. nov. is proposed. The type strain is Fa-1T (=CGMCC 1.5336T =JCM 13561T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2266-2270 ◽  
Author(s):  
Yasuhiro Shimane ◽  
Yuji Hatada ◽  
Hiroaki Minegishi ◽  
Akinobu Echigo ◽  
Syuhei Nagaoka ◽  
...  

Strain YSM-79T was isolated from commercial salt made from seawater in Yonaguni island, Okinawa, Japan. The strain is an aerobic, Gram-negative, chemo-organotrophic and extremely halophilic archaeon. Cells are short rods that lyse in distilled water. Growth occurs at 1.5–5.3 M NaCl (optimum 2.5–3.0 M), pH 5.0–8.8 (optimum pH 5.2–6.3) and 20–55 °C (optimum 40 °C). Mg2+ is required for growth, with maximum growth at 200–300 mM Mg2+. Polar lipid analysis revealed the presence of phosphatidylglycerol, phosphatidylglycerophosphate methyl ester, sulfated diglycosyl diether-1 and five unidentified glycolipids. The G+C content of the DNA was 64 mol%. On the basis of 16S rRNA gene sequence analysis, strain YSM-79T was determined to be a member of the family Halobacteriaceae, with the closest related genus being Halobacterium (94 % sequence identity). In addition, the rpoB′ gene sequence of strain YSM-79T had <88 % sequence similarity to those of other members of the family Halobacteriaceae. The results of phenotypic, chemotaxonomic and phylogenetic analysis suggested that strain YSM-79T should be placed in a new genus, Salarchaeum gen. nov., as a representative of Salarchaeum japonicum sp. nov. The type strain is YSM-79T ( = JCM 16327T  = CECT 7563T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1144-1148 ◽  
Author(s):  
M. C. Gutiérrez ◽  
A. M. Castillo ◽  
P. Corral ◽  
M. Kamekura ◽  
A. Ventosa

Two halophilic archaea, strains EN-2T and SH-4, were isolated from the saline lakes Erliannor and Shangmatala, respectively, in Inner Mongolia, China. Cells were strictly aerobic, motile rods. Colonies were red. Strains EN-2T and SH-4 were able to grow at 25–50 °C (optimum 35–40 °C), with 2.5–5.0 M NaCl (optimum 3.4 M NaCl) and at pH 6.0–9.0 (optimum pH 7.5). MgCl2 was not required for growth. Cells lysed in distilled water and the lowest NaCl concentration that prevented cell lysis was 12 % (w/v). On the basis of 16S rRNA gene sequence analysis, strains EN-2T and SH-4 were closely related to Halorubrum cibi B31T (97.9 and 98.0 % similarity, respectively), Hrr. tibetense 8W8T (97.3 and 97.7 %), Hrr. alkaliphilum DZ-1T (96.8 and 97.1 %), Hrr. luteum CGSA15T (96.8 and 97.0 %) and Hrr. lipolyticum 9-3T (96.8 and 97.0 %). DNA–DNA hybridization showed that strains EN-2T and SH-4 did not belong to the same species as any of these strains (≤45 % DNA–DNA relatedness) but that they are members of the same species (>70 % DNA–DNA relatedness). Polar lipid analysis revealed that strains EN-2T and SH-4 contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, sulfated diglycosyl diethers and several unidentified glycolipids. The DNA G+C content of both isolates was 62.1 mol%. It was concluded that strains EN-2T and SH-4 represent a novel species of the genus Halorubrum, for which the name Halorubrum aquaticum sp. nov. is proposed. The type strain is EN-2T ( = CECT 7174T  = CGMCC 1.6377T  = JCM 14031T).


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hana Trigui ◽  
Salma Masmoudi ◽  
Céline Brochier-Armanet ◽  
Sami Maalej ◽  
Sam Dukan

An extremely halophilic archaeon, strain ETD6, was isolated from a marine solar saltern in Sfax, Tunisia. Analysis of the 16S rRNA gene sequence showed that the isolate was phylogenetically related to species of the genusHalorubrumamong the familyHalobacteriaceae, with a close relationship toHrr. xinjiangense(99.77% of identity). However, value for DNA-DNA hybridization between strain ETD6 andHrr.xinjiangensewere about 24.5%. The G+C content of the genomic DNA was 65.1 mol% (T(m)). Strain ETD6 grew in 15–35% (w/v) NaCl. The temperature and pH ranges for growth were 20–55°C and 6–9, respectively. Optimal growth occurred at 25% NaCl, 37°C, and pH 7.4. The results of the DNA hybridization againstHrr. xinjiangenseand physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain ETD6 from otherHrr.species. Therefore, strain ETD6 represents a novel species of the genusHalorubrum, for which the nameHrr. sfaxensesp. nov. is proposed. The Genbank EMBL-EBI accession number is GU724599.


2010 ◽  
Vol 60 (3) ◽  
pp. 633-637 ◽  
Author(s):  
F. F. Hezayen ◽  
M. C. Gutiérrez ◽  
A. Steinbüchel ◽  
B. J. Tindall ◽  
B. H. A. Rehm

Strain 56T was isolated from a hypersaline soil in Aswan (Egypt). Cells were pleomorphic rods. The organism was neutrophilic, motile and required at least 1.7 M (10 % w/v) NaCl, but not MgCl2, for growth; optimal growth occurred at ≥3.8 M (≥22.5 %) NaCl. The strain was thermotolerant with an optimum temperature for growth of 40 °C, although growth was possible up to 55 °C. The G+C content of the DNA of the novel strain was 67.1 mol%.16S rRNA gene sequence analysis revealed that strain 56T was a member of the phyletic group defined by the family Halobacteriaceae, showing the highest similarity to Halopiger xanaduensis SH-6T (99 %) and the next highest similarity of 94 % to other members of the family Halobacteriaceae. DNA–DNA hybridization revealed 27 % relatedness between strain 56T and Hpg. xanaduensis SH-6T. Polar lipid analysis revealed the presence of the bis-sulfated glycolipid S2-DGD-1 as the sole glycolipid and the absence of the glycerol diether analogue phosphatidylglycerosulfate. Both C20 . 20 and C20 . 25 core lipids were present. Strain 56T accumulated large amounts of polyhydroxybutyrate and also secreted an exopolymer. Physiological and biochemical differences suggested that Hpg. xanaduanesis and strain 56T were sufficiently different to be separated into two distinct species. It is suggested that strain 56T represents a novel species of the genus Halopiger, for which the name Halopiger aswanensis sp. nov. is proposed. The type strain is strain 56T (=DSM 13151T=JCM 11628T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3847-3852 ◽  
Author(s):  
Azahara Pérez-Davó ◽  
Margarita Aguilera ◽  
Ana González-Paredes ◽  
María Luján Jiménez-Pranteda ◽  
Mercedes Monteoliva-Sánchez

An extremely halophilic archaeon, strain S2FP14T, was isolated from a brine sample from the inland hypersaline lake Fuente de Piedra, a saline-wetland wildfowl reserve located in the province of Málaga in southern Spain. Colonies were red-pigmented and the cells were Gram-staining-negative, motile and pleomorphic. S2FP14T was able to grow in media containing 12.5–30 % (w/v) total salts (optimum 20 %) at pH 7–8.5 (optimum 7.5) and at 25–50 °C (optimum 37 °C). The 16S rRNA gene sequence analysis indicated that this strain represented a member of the genus Halobellus. S2FP14T showed a similarity of 99.5 % to Halobellus inordinatus YC20T, 96.1 % to Halobellus litoreus GX31T, 95.9 % to Halobellus limi TBN53T, 95.5 % to Halobellus rarus YC21T, 95.2 % to Halobellus rufus CBA1103T, 94.6 % to Halobellus salinus CSW2.24.4T and 94.6 % to Halobellus clavatus TNN18T. The rpoB′ gene sequence similarity of strain S2FP14T was 97.4 % to 87.6 % with members of genus Halobellus. The major phospholipids of strain S2FP14T were phosphatidylglycerol phosphate methyl ester and phosphatidylglycerosulfate, plus a very small amount of phosphatidylglycerol and an archaeal analogue of bisphosphatidylglycerol. With regard to glycolipid composition, the most abundant glycolipids were the sulfated diglycosyl diphytanilglyceroldiether and a glycosyl-cardiolipin. The G+C content of strain S2FP14T genomic DNA was 61.4 mol%. The DNA–DNA hybridization between strain S2FP14T and Halobellus inordinatus JCM 18361T was 51 %. Based on the phylogenetic, phenotypic and chemotaxonomic features, a novel species, Halobellus ramosii sp. nov. is proposed. The type strain is S2FP14T ( = CECT 8167T = DSM 26177T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2175-2179 ◽  
Author(s):  
M. Vancanneyt ◽  
M. Zamfir ◽  
L. A. Devriese ◽  
K. Lefebvre ◽  
K. Engelbeen ◽  
...  

Four isolates, which were obtained from Belgian, Moroccan and Romanian dairy products, constituted a homogeneous but unidentified taxon after screening with whole-cell protein fingerprinting. Complete 16S rRNA gene sequence analysis classified representative strains in the genus Enterococcus. Highest sequence similarities of 98·6 and 98·0 % were obtained with the species Enterococcus sulfureus and Enterococcus saccharolyticus, respectively. Growth characteristics, biochemical features, tRNA intergenic length polymorphism analysis, DNA–DNA hybridization and DNA G+C contents of selected strains demonstrated that they represent a single, novel Enterococcus species. It differs phenotypically from other enterococci in characteristics commonly considered as typical of this genus: no growth in 6·5 % NaCl or 0·4 % sodium azide, and no acid production from a wide range of carbohydrates. The name Enterococcus saccharominimus sp. nov. is proposed for this novel species; the type strain (LMG 21727T=CCM 7220T) was isolated from contaminated pasteurized cow's milk.


2006 ◽  
Vol 56 (8) ◽  
pp. 1765-1769 ◽  
Author(s):  
Daniel Muller ◽  
Diliana D. Simeonova ◽  
Philippe Riegel ◽  
Sophie Mangenot ◽  
Sandrine Koechler ◽  
...  

An arsenite-oxidizing bacterium, designated strain ULPAs1T, was isolated from industrial sludge heavily contaminated with arsenic. Cells of this isolate were Gram-negative, curved rods, motile by means of a polar flagellum. The strain was positive for oxidase and catalase activities, was able to reduce nitrate to nitrite, used acetate, lactate and peptone as organic carbon sources under aerobic conditions and was able to oxidize arsenite (As[III]) to arsenate (As[V]). 16S rRNA gene sequence analysis and the absence of dodecanoic fatty acids suggested that this strain represents a member of the genus Herminiimonas of the family Oxalobacteraceae, order Burkholderiales in the Betaproteobacteria. Genomic DNA–DNA hybridization between strain ULPAs1T and Herminiimonas fonticola S-94T and between strain ULPAs1T and Herminiimonas aquatilis CCUG 36956T revealed levels of relatedness of <10 %, well below the recommended 70 % species cut-off value. Thus, strain ULPAs1T (=CCM 7303T=DSM 17148T=LMG 22961T) is the type strain of a novel species of Herminiimonas, for which the name Herminiimonas arsenicoxydans sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document